Influence of Rotational Cues on the Neural Processing of Gravito-Inertial Force

Sensory systems often provide ambiguous information. For example, otolith organs measure gravito-inertial force (GIF), the sum of gravitational force and inertial force due to linear acceleration. According to Einstein’s equivalence principle, no set of linear accelerometers alone can distinguish gravitational force (which changes with head orientation during head tilt) from inertial force (which changes with linear acceleration of the head). Therefore, the central nervous system (CNS) must use other sensory cues to distinguish tilt from translation. For example, the CNS can use rotational cues provided by the semicircular canals and vision. Much of this chapter provides a brief review of studies showing the influence of rotational cues on the neural processing of tilt and translation. However, we also include preliminary unpublished data. We begin by discussing the underlying physics (and associated neural processes) and neural representations. We then present studies that measure the influence of rotational cues on tilt responses before presenting studies of translation responses. We finish by reviewing modeling approaches to sensory integration for both tilt and translation responses.

[1]  Charles M. Oman,et al.  Human Visual Orientation in Weightlessness , 2003 .

[2]  F A Miles,et al.  Ocular responses to linear motion are inversely proportional to viewing distance. , 1989, Science.

[3]  H Collewijn,et al.  Eye movements due to linear accelerations in the rabbit. , 1975, The Journal of physiology.

[4]  L. Zupan,et al.  Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. , 2002, Journal of neurophysiology.

[5]  D H Weir,et al.  Theory of manual vehicular control. , 1969, Ergonomics.

[6]  Donald E. Parker,et al.  Inertial acceleration as a measure of linear vection: An alternative to magnitude estimation , 1995, Perception & psychophysics.

[7]  V Henn,et al.  EFFECTS OF GRAVITY ON ROTATORY NYSTAGMUS IN MONKEYS * , 1981, Annals of the New York Academy of Sciences.

[8]  M. Sanders Handbook of Sensory Physiology , 1975 .

[9]  A. Graybiel,et al.  Contributing factors in the perception of the oculogravic illusion. , 1963, The American journal of psychology.

[10]  D E Angelaki,et al.  Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses To translation. , 1998, Journal of neurophysiology.

[11]  Thomas C. Henderson Traditional and Non-Traditional Robotic Sensors , 1990, NATO ASI Series.

[12]  H. Galiana,et al.  Hypothesis for shared central processing of canal and otolith signals. , 1998, Journal of neurophysiology.

[13]  R. Held,et al.  Moving Visual Scenes Influence the Apparent Direction of Gravity , 1972, Science.

[14]  B. Mccabe,et al.  Nystagmus response of the otolith organs , 1964, Transactions of the American Laryngological, Rhinological and Otological Society, Inc.

[15]  Laurence R. Young,et al.  Optimal Estimator Model for Human Spatial Orientation a , 1988 .

[16]  Walter F. Bischof,et al.  Thresholds From Psychometric Functions: Superiority of Bootstrap to Incremental and Probit Variance Estimators , 1991 .

[17]  S. H. Seidman,et al.  Tilt perception during dynamic linear acceleration , 1998, Experimental Brain Research.

[18]  D M Merfeld,et al.  Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli. , 2003, Journal of neurophysiology.

[19]  M J Correia,et al.  Elicitation of horizontal nystagmus by periodic linear acceleration. , 1966, Acta oto-laryngologica.

[20]  A. J. Benson,et al.  Psychophysics, applied aspects and general interpretations , 1974 .

[21]  Murray R. Spiegel,et al.  Schaum's outline of theory and problems of theoretical mechanics : with an introduction to Lagrange's equations and Hamiltonian theory , 1980 .

[22]  H. Galiana,et al.  A bilateral model for central neural pathways in vestibuloocular reflex. , 1984, Journal of neurophysiology.

[23]  G R Barnes,et al.  Eye movements induced by linear acceleration are modified by visualisation of imaginary targets. , 1989, Acta oto-laryngologica. Supplementum.

[24]  A. Graybiel,et al.  The Delay in Visual Reorientation following Exposure to a Change in Direction of Resultant Force on a Human Centrifuge , 1951 .

[25]  Christian Darlot,et al.  Computation of inverse dynamics for the control of movements , 1996, Biological Cybernetics.

[26]  V. J. Wilson,et al.  Mammalian Vestibular Physiology , 1979, Springer US.

[27]  A. J. Benson Modification of the Response to Angular Accelerations by Linear Accelerations , 1974 .

[28]  J. Goldberg,et al.  Eye movements and vestibular-nerve responses produced in the squirrel monkey by rotations about an earth-horizontal axis , 2004, Experimental Brain Research.

[29]  S Glasauer,et al.  Determinants of orientation in microgravity. , 1992, Acta astronautica.

[30]  B J Hess,et al.  Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information , 1999, The Journal of Neuroscience.

[31]  F E Guedry,et al.  The effect of semicircular cana stimulation during tilting on the subsequent perception of the visual vertical. , 1970, Acta oto-laryngologica.

[32]  Ian S. Curthoys,et al.  The delay of the oculogravic illusion , 1996, Brain Research Bulletin.

[33]  Bruce Bridgeman,et al.  Perception & control of self-motion , 1991 .

[34]  Olivier Faugeras,et al.  Cooperation of the inertial and visual systems , 1990 .

[35]  D M Merfeld,et al.  Effect of spaceflight on ability to sense and control roll tilt: human neurovestibular studies on SLS-2. , 1996, Journal of applied physiology.

[36]  E. Holst,et al.  Einfluß des Bogengangsystems auf die “subjektive Lotrechte” beim Menschen , 2004, Naturwissenschaften.

[37]  L R Young,et al.  Visual field influence on manual roll and pitch stabilization. , 1988, Aviation, space, and environmental medicine.

[38]  M Rocchetti,et al.  Enantioselective recognition of two anticonvulsants, FCE 26743 and FCE 28073, by MAO, and relationship between MAO-B inhibition and FCE 26743 concentrations in rat brain. , 1995, Progress in brain research.

[39]  C. M. Schor,et al.  Optokinetic and vection responses to apparent motion in man , 1984, Vision Research.

[40]  B. Hess,et al.  Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex. , 1994, Journal of neurophysiology.

[41]  J. Goldberg,et al.  Influence of static head position on the horizontal nystagmus evoked by caloric, rotational and optokinetic stimulation in the squirrel monkey , 2004, Experimental Brain Research.

[42]  D M Merfeld,et al.  Modeling human vestibular responses during eccentric rotation and off vertical axis rotation. , 1995, Acta oto-laryngologica. Supplementum.

[43]  G D Paige,et al.  Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. , 1997, Journal of neurophysiology.

[44]  F E GUEDRY,et al.  ORIENTATION OF THE ROTATION-AXIS RELATIVE TO GRAVITY: ITS INFLUENCE ON NYSTAGMUS AND THE SENSATION OF ROTATION. , 1965, Acta oto-laryngologica.

[45]  G. Paige Caloric responses after horizontal canal inactivation. , 1985, Acta oto-laryngologica.

[46]  G. Paige,et al.  Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. , 1991, Journal of neurophysiology.

[47]  S Glasauer Interaction of Semicircular Canals and Otoliths in the Processing Structure of the Subjective Zenith , 1992, Annals of the New York Academy of Sciences.

[48]  A. Graybiel,et al.  Factors contributing to the delay in the perception of the oculogravic illusion. , 1966, The American journal of psychology.

[49]  V. Henn,et al.  Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation , 1977, Experimental Brain Research.

[50]  T. C. Hain,et al.  A model of the nystagmus induced by off vertical axis rotation , 1986, Biological Cybernetics.

[51]  F. Plum Handbook of Physiology. , 1960 .

[52]  L. Harris,et al.  Levels of Perception , 2013, Springer New York.

[53]  A GRAYBIEL,et al.  THE EFFECT OF CHANGING THE RESULTANT LINEAR ACCELERATION RELATIVE TO THE SUBJECT ON NYSTAGMUS GENERATED BY ANGULAR ACCELERATION. , 1964, Aeromedica acta.

[54]  Christian Darlot,et al.  Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements , 2002, Biological Cybernetics.

[55]  L. Zupan,et al.  Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation. , 2001, Journal of neurophysiology.

[56]  Benson Aj,et al.  Comparison of the effect of the direction of the gravitational acceleration on post-rotational responses in yaw, pitch and roll. , 1966 .

[57]  L. Young,et al.  Integration of semicircular canal and otolith information for multisensory orientation stimuli , 1977 .

[58]  H. A. Witkin,et al.  Studies in space orientation; perception of the upright with displaced visual fields. , 1948, Journal of experimental psychology.

[59]  G. D. Paige,et al.  The influence of target distance on eye movement responses during vertical linear motion , 2004, Experimental Brain Research.

[60]  Jacques Droulez,et al.  Modelization of Vestibulo-Ocular Reflex (VOR) and Motion Sickness Prediction , 1994 .

[61]  Laurence R. Young,et al.  The dynamic contributions of the otolith organs to human ocular torsion , 1996, Experimental Brain Research.

[62]  Scott Bradley Stephenson Influence of the visual field on manual roll and lateral stabilization , 1993 .

[63]  J. Dichgans,et al.  Differential effects of central versus peripheral vision on egocentric and exocentric motion perception , 1973, Experimental Brain Research.

[64]  A. J. Benson,et al.  Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. , 1986, Aviation, space, and environmental medicine.

[65]  William G. Denhard,et al.  Gyroscopic Theory, Design and Instrumentation , 1969 .

[66]  L. Young,et al.  The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt , 2004, Experimental Brain Research.

[67]  L. R. Young,et al.  Influence of combined visual and vestibular cues on human perception and control of horizontal rotation , 2004, Experimental Brain Research.

[68]  S. Ebenholtz,et al.  Vertical and horizontal eye displacement during static pitch and roll postures. , 1996, Journal of Vestibular Research-Equilibrium & Orientation.

[69]  Ian P Howard,et al.  The Contribution of Motion, the Visual Frame, and Visual Polarity to Sensations of Body Tilt , 1994, Perception.

[70]  C Wall,et al.  Effects of static orientation upon human optokinetic afternystagmus. , 1999, Acta oto-laryngologica.

[71]  R. Peterka,et al.  Neural processing of gravito-inertial cues in humans. I. Influence of the semicircular canals following post-rotatory tilt. , 2000, Journal of neurophysiology.

[72]  F A Miles,et al.  Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. , 1991, Journal of neurophysiology.

[73]  S. Glasauer,et al.  Modelling Three-Dimensional Vestibular Responses During Complex Motion Stimulation , 1997 .

[74]  A. D. Kuo An optimal control model of human balance: can it provide theoretical insight to neural control of movement? , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[75]  Johannes Dichgans,et al.  Characteristics of moving visual scenes influencing spatial orientation , 1975, Vision Research.

[76]  R. Mayne,et al.  A Systems Concept of the Vestibular Organs , 1974 .

[77]  B. Cohen,et al.  Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. , 1999, Journal of neurophysiology.

[78]  D E Angelaki,et al.  Vestibular Discrimination of Gravity and Translational Acceleration , 2001, Annals of the New York Academy of Sciences.

[79]  D M Merfeld,et al.  Humans use internal models to estimate gravity and linear acceleration , 1999, Nature.

[80]  L. Young,et al.  Effects of linear acceleration on vestibular nystagmus , 1968 .

[81]  Johannes Dichgans,et al.  Motion habituation: Inverted self-motion perception and optokinetic after-nystagmus , 2004, Experimental Brain Research.

[82]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[83]  B. Hess,et al.  Oculomotor control of primary eye position discriminates between translation and tilt. , 1999, Journal of neurophysiology.

[84]  Grant Jw,et al.  Mechanics of the otolith organ--dynamic response. , 1986 .

[85]  T. Heckmann,et al.  Circular Vection as a Function of the Relative Sizes, Distances, and Positions of Two Competing Visual Displays , 1989, Perception.

[86]  J. Holly Baselines for three-dimensional perception of combined linear and angular self-motion with changing rotational axis. , 2000, Journal of vestibular research : equilibrium & orientation.

[87]  Michael Fetter,et al.  Three-Dimensional Kinematics of Eye, Head and Limb Movements , 1997 .

[88]  Eye movements induced by gravitational force and by angular acceleration: their relationship. , 1987, Acta oto-laryngologica.

[89]  R. Yee,et al.  Eye movements induced by linear acceleration on a parallel swing. , 1988, Journal of neurophysiology.