Single Electron Transfer‐Induced Selective α˗Oxygenation of Glycine Derivatives

[1]  Stephen J. Walsh,et al.  Photocatalytic methods for amino acid modification. , 2020, Chemical Society reviews.

[2]  C. Vila,et al.  Asymmetric Oxidative Mannich Reactions , 2020 .

[3]  Adrián Gómez‐Suárez,et al.  Radikal‐basierte Synthese und Modifikation von Aminosäuren , 2020 .

[4]  Rongli Zhang,et al.  Site-selective and diastereoselective functionalization of α-amino acid and peptide derivatives via palladium-catalyzed sp3 C–H activation , 2020 .

[5]  V. I. Maleev,et al.  Advances in Asymmetric Amino Acid Synthesis Enabled by Radical Chemistry , 2020 .

[6]  Adrián Gómez‐Suárez,et al.  Radical‐Based Synthesis and Modification of Amino Acids , 2020, Angewandte Chemie.

[7]  jin-quan yu,et al.  From Pd(OAc)2 to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C-H Functionalization Reactions. , 2020, Accounts of chemical research.

[8]  Ge Qu,et al.  Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme , 2020 .

[9]  Ge Qu,et al.  The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. , 2020, Angewandte Chemie.

[10]  A. Studer,et al.  Der “Persistent Radical Effect” in der organischen Chemie , 2020, Angewandte Chemie.

[11]  A. Studer,et al.  The Persistent Radical Effect in Organic Synthesis. , 2019, Angewandte Chemie.

[12]  M. Kanai,et al.  Synthetic Methodology-driven Chemical Protein Modifications , 2019, Chemistry Letters.

[13]  U. Kazmaier,et al.  Peptide Modifications: Versatile Tools in Peptide and Natural Product Syntheses , 2019, Synlett.

[14]  B. G. Davis,et al.  Concepts of Catalysis in Site-Selective Protein Modifications , 2019, Journal of the American Chemical Society.

[15]  M. Reetz Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts? , 2019, Accounts of chemical research.

[16]  Peter G. Jones,et al.  Diastereoselective Radical Couplings Enable the Asymmetric Synthesis of anti -β-Amino-α-hydroxy Carboxylic Acid Derivatives , 2018, European Journal of Organic Chemistry.

[17]  R. Pohl,et al.  Unique Stereoselective Homolytic C-O Bond Activation in Diketopiperazine-Derived Alkoxyamines by Adjacent Amide Pyramidalization. , 2018, Chemistry.

[18]  Sushobhan Chowdhury,et al.  Recent Advances on Amino Acid Modifications via C–H Functionalization and Decarboxylative Functionalization Strategies , 2018 .

[19]  Frances H. Arnold Gerichtete Evolution: Wie man neue Chemie zum Leben erweckt , 2018 .

[20]  Frances H Arnold,et al.  Directed Evolution: Bringing New Chemistry to Life , 2017, Angewandte Chemie.

[21]  Łukasz Berlicki,et al.  Sequence Engineering to Control the Helix Handedness of Peptide Foldamers. , 2017, Chemistry.

[22]  A. Madder,et al.  Chemical Protein Modification through Cysteine , 2016, Chembiochem : a European journal of chemical biology.

[23]  Tynchtyk Amatov,et al.  Synthese überbrückter Diketopiperazine mit Hilfe des persistenten Radikaleffekts und eine formale Synthese von Bicyclomycin , 2015 .

[24]  R. Pohl,et al.  Synthesis of bridged diketopiperazines by using the persistent radical effect and a formal synthesis of bicyclomycin. , 2015, Angewandte Chemie.

[25]  Jonas S. Laursen,et al.  β-Peptoid Foldamers at Last. , 2015, Accounts of chemical research.

[26]  Hans Renata,et al.  Ausdehnung des Enzym‐Universums: Zugang zu nicht‐natürlichen Reaktionen durch mechanismusgeleitete, gerichtete Evolution , 2015 .

[27]  Frances H Arnold,et al.  Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. , 2015, Angewandte Chemie.

[28]  Gonçalo J L Bernardes,et al.  Advances in chemical protein modification. , 2015, Chemical reviews.

[29]  B. König,et al.  Photocatalytic α‐Oxyamination of Stable Enolates, Silyl Enol Ethers, and 2‐Oxoalkane Phosphonic Esters , 2015 .

[30]  U. Jahn,et al.  General and Efficient α‐Oxygenation of Carbonyl Compounds by TEMPO Induced by Single‐Electron‐Transfer Oxidation of Their Enolates , 2012 .

[31]  F. Fülöp,et al.  Peptidic foldamers: ramping up diversity. , 2012, Chemical Society reviews.

[32]  A. F. Zahoor,et al.  A straightforward approach towards combined α-amino and α-hydroxy acids based on Passerini reactions , 2011, Beilstein journal of organic chemistry.

[33]  A. Kristensen,et al.  Cell-permeable and plasma-stable peptidomimetic inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction. , 2011, Journal of medicinal chemistry.

[34]  B. G. Davis,et al.  Olefin Metathesis for Site‐Selective Protein Modification , 2009, Chembiochem : a European journal of chemical biology.

[35]  U. Kazmaier,et al.  Peptide Backbone Modifications , 2008 .

[36]  H. Sajiki,et al.  Solvent-modulated Pd/C-catalyzed deprotection of silyl ethers and chemoselective hydrogenation , 2004 .

[37]  J. Rokach,et al.  Silyl group deprotection by Pd/C/H2. A facile and selective method , 2004 .

[38]  Peter Blakskjaer,et al.  Studies on the C-alkylation and C-allylation of small peptides employing glycyl radical intermediates , 2001 .

[39]  T. Skrydstrup,et al.  Selective Side Chain Introduction onto Small Peptides Mediated by Samarium Diiodide: A Potential Route to Peptide Libraries , 2000 .

[40]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[41]  C. Easton Free-Radical Reactions in the Synthesis of alpha-Amino Acids and Derivatives. , 1997, Chemical reviews.

[42]  H. Hiemstra,et al.  Xanthate transfer addition of a glycine radical equivalent to alkenes; a novel route to a-amino acid derivates. , 1994 .

[43]  D. Seebach,et al.  Peptide Enolates. C-Alkylation of Glycine Residues in linear tri-, tetra-, and pentapeptides via dilithium azadienediolates , 1994 .

[44]  D. Seebach,et al.  Modification of Cyclosporin A (CS): Generation of an enolate at the sarcosine residue and reactions with electrophiles , 1993 .

[45]  D. Seebach,et al.  C-alkylation of peptides through polylithiated and LiCl-solvated derivatives containing sarcosine Li-enolate units , 1991 .

[46]  C. Easton,et al.  Selective reaction of glycine residues in hydrogen atom transfer from amino acid derivatives , 1989 .

[47]  C. Easton,et al.  Preferential reactivity of glycine residues in free radical reactions of amino acid derivatives , 1986 .

[48]  J. Sperling,et al.  Photochemical modification of glycine-containing polypeptides , 1971 .

[49]  D. Elad,et al.  Photoalkylation of glycine derivatives , 1965 .