Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films

A dense rutile TiO2 thin film was synthesized by the thermal oxidation of a sputtered titanium metal film in ambient air. The effects on optical properties of TiO2 films of the crystal structure and microstructural evolution at various oxidation temperatures were investigated. The Ti films transformed into single-phase rutile TiO2 at temperatures ⩾ 550 °C without going through an anatase-to-rutile transformation. Instead, an additional crystalline Ti2O phase was detected at 550 °C only. An increase in the oxidation temperatures ranging between 700 and 900 °C led to an increase in both the refractive index and absorption coefficient, but a decrease in the band gap energy (Eg). According to the coherent potential approximation model, the band gap evolution of the oxidized films was primarily attributed to the electronic disorder due to oxygen deficiency at a higher oxidation temperature rather than the presence of an amorphous component in the prepared films.

[1]  D. Whitmore,et al.  Thermodynamic Study of Phase Equilibria in the Titanium‐Oxygen System within the TiO1.95 ‐ TiO2 Region , 1963 .

[2]  S. Woo,et al.  Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition , 1994 .

[3]  Lijian Meng,et al.  Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures , 1993 .

[4]  L. F. Donaghey,et al.  Effect of target oxidation on reactive sputtering rates of titanium in argon-oxygen plasmas , 1976 .

[5]  G. M. Rao,et al.  dc reactive magnetron sputtering of titanium‐structural and optical characterization of TiO2 films , 1992 .

[6]  G. Battaglin,et al.  Compositional and Microstructural Characterization of RuO2 ‐ TiO2 Catalysts Synthesized by the Sol‐Gel Method , 1992 .

[7]  S. Schiller,et al.  Influence of deposition parameters on the optical and structural properties of TiO2 films produced by reactive d.c. plasmatron sputtering , 1981 .

[8]  G. Exarhos Raman determination of molecular structure and physical properties of dielectric coatings , 1986 .

[9]  Feng Zhang,et al.  Highly oriented rutile-type TiO2 films synthesized by ion beam enhanced deposition , 1997 .

[10]  E. Ritter Deposition of Oxide Films by Reactive Evaporation , 1966 .

[11]  C. Mead,et al.  Conduction through TiO2 thin films with large ionic space charge , 1967 .

[12]  W. Kaiser,et al.  TiO2 film oxygen sensors made by chemical vapour deposition from organometallics , 1983 .

[13]  L. Smart,et al.  Solid State Chemistry: An Introduction, Third Edition , 1995 .

[14]  Elaine Moore,et al.  Solid State Chemistry: An Introduction , 1995 .

[15]  N. Martin,et al.  Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering , 1996 .

[16]  W. Göpel,et al.  Intrinsic defects of Ti O 2 (110): Interaction with chemisorbed O 2 , H 2 , CO, and C O 2 , 1983 .

[17]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[18]  R. Swanepoel Determination of the thickness and optical constants of amorphous silicon , 1983 .

[19]  Nicolas Martin,et al.  Microstructure modification of amorphous titanium oxide thin films during annealing treatment , 1997 .

[20]  J. McNeil,et al.  Properties of TiO2 and SiO2 thin films deposited using ion assisted deposition. , 1985, Applied optics.

[21]  J. Deloach,et al.  Correlation between titania film structure and near ultraviolet optical absorption , 1999 .

[22]  J. W. Rogers,et al.  Low temperature diffusion of oxygen in titanium and titanium oxide films , 1988 .

[23]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[24]  D. Mergel,et al.  Nucleation and growth in TiO2 films prepared by sputtering and evaporation , 1994 .

[25]  Howard F. McMurdie,et al.  Phase diagrams for ceramists , 1964 .

[26]  J. Calderwood,et al.  D.c. and a.c. conduction in amorphous titanium dioxide thin films , 1973 .

[27]  Y. Iida,et al.  Grain Growth and Phase Transformation of Titanium Oxide During Calcination , 1961 .

[28]  M. Froelicher,et al.  Influence of Copper Addition on Optical Properties of TiO2 , 1979 .

[29]  S. Mohan,et al.  Optical properties of electron-beam-evaporated TiO2 films☆ , 1989 .

[30]  G. P. Burns Titanium dioxide dielectric films formed by rapid thermal oxidation , 1989 .

[31]  Y. Fukuda,et al.  Effects of Postannealing in Oxygen Ambient on Leakage Properties of (Ba, Sr)TiO3 Thin-Film Capacitors , 1998 .

[32]  J. Takada,et al.  Characteristics of titanium oxide films deposited by an activated reactive evaporation method , 1994 .

[33]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .

[34]  K. Ramkumar,et al.  Growth of titanium oxide overlayers by thermal oxidation of titanium , 1988 .

[35]  José M.F. Ferreira,et al.  On the Titania Phase Transition by Zirconia Additive in a Sol-Gel-Derived Powder , 1998 .

[36]  D. C. Cronemeyer Electrical and Optical Properties of Rutile Single Crystals , 1952 .

[37]  Yongzheng Wang,et al.  The energy gap of r.f.-sputtered BaTiO3 thin films with different grain size , 1996 .