Wide-band modulation of 1.3 mu m InGaAsP buried crescent lasers with iron- and cobalt-doped semi-insulating current blocking layers

The performance characteristics of 1.3- mu m InGaAsP semi-insulating buried-crescent (SIBC) lasers with Fe- and co-doped InP current blocking layers are compared. Threshold currents as low as 10 mA (Fe) and 8 mA (Co) at room temperature, total differential quantum efficiency of 60%, high-temperature operation up to 100 degrees C, high-power output of 42 mW/facet (Fe) and 30 mW/facet (Co), and 3-dB modulation bandwidth of 11 GHz have been achieved. These results indicate that both Fe and Co-doped InP layers grown by low-pressure metalorganic chemical-vapor deposition (LPMOCVD) provide effective current confinement for high-performance semi-insulating buried-crescent lasers (SIBC) lasers. A detailed model based on experimental data for SIBC lasers is also presented for the analysis of intrinsic and parasitic effects on the frequency response of the lasers. The model is then used to design lasers with larger modulation bandwidth. >

[1]  Kenya Nakai,et al.  Planar‐embedded InGaAsP/InP heterostructure laser with a semi‐insulating InP current‐blocking layer grown by metalorganic chemical vapor deposition , 1987 .

[2]  K. Hess,et al.  High‐speed and high‐power 1.3‐μm InGaAsP buried crescent injection lasers with semi‐insulating current blocking layers , 1987 .

[3]  G. T. Brown,et al.  The single crystal growth and electrical properties of cobalt-doped indium phosphide , 1981 .

[4]  John E. Bowers,et al.  High speed semiconductor laser design and performance , 1987 .

[5]  P. Yu,et al.  BH InGaAsP Lasers with an LPE Grown Semi-Insulating Layer , 1986 .

[6]  K. Kasahara,et al.  Planar surface buried-heterostructure InGaAsP/InP lasers with hydride VPE-grown Fe-doped highly resistive current-blocking layers , 1986 .

[7]  Wei Cheng,et al.  Semi-insulating InP grown by low pressure MOCVD , 1987 .

[8]  Chin B. Su,et al.  Effect of doping level on the gain constant and modulation bandwidth of InGaAsP semiconductor lasers , 1984 .

[9]  W. D. Johnston,et al.  Electrical characterization of Fe‐doped semi‐insulating InP grown by metalorganic chemical vapor deposition , 1984 .

[10]  Wood-Hi Cheng,et al.  High Speed 1.31µm InGaAsP Lasers With Semi-Insulating Current-Blocking Layers: Experiment And Modeling , 1989, Other Conferences.

[11]  K. Hess,et al.  1.3 μm InGaAsP buried crescent lasers with cobalt‐doped semi‐insulating current blocking layers grown by metalorganic chemical vapor deposition , 1988 .

[12]  L. .. Zinkiewicz,et al.  High‐resistivity (>105 Ω cm) InP layers by liquid phase epitaxy , 1983 .

[13]  R. Humphreys,et al.  Electrical properties of cobalt-doped InP , 1983 .

[14]  V. Lanzisera,et al.  Ultra-high-speed modulation of 1.3-µm InGaAsP diode lasers , 1986 .

[15]  Kenya Nakai,et al.  InGaAsP/InP planar buried heterostructure lasers with semi-insulating InP current blocking layers grown by MOCVD , 1987 .

[16]  U. Koren,et al.  High-speed, polyimide-based semi-insulating planar buried heterostructures , 1987 .

[17]  H. Gatos,et al.  New semi‐insulating InP: Titanium midgap donors , 1986 .

[18]  K. Hess,et al.  Dynamic characteristics of semi-insulating current blocking layers: application to modulation performance of 1.3-μm InGaAsP lasers , 1988 .

[19]  S. Forrest,et al.  Semi‐insulating properties of Fe‐implanted InP. I. Current‐limiting properties of n+‐semi‐insulating‐n+ structures , 1985 .

[20]  Gregory Raybon,et al.  Semi-insulating blocked planar BH GaInAsP/InP laser with high power and high modulation bandwidth , 1988 .

[21]  John E. Bowers,et al.  High-speed InGaAsP constricted-mesa lasers , 1986 .