Biomaterial surface modification of titanium and titanium alloys for medical applications

[1]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[2]  K. Nam,et al.  Deposition of Ti thin film using the magnetron sputtering method , 2003 .

[3]  Titanium nitride thin films obtained by a modified physical vapor deposition process , 2000 .

[4]  S. Grigorescu,et al.  Various sized nanotubes on TiZr for antibacterial surfaces , 2013 .

[5]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[6]  Krishna Kant,et al.  Tailoring the surface functionalities of titania nanotube arrays. , 2010, Biomaterials.

[7]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[8]  Lingzhou Zhao,et al.  Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. , 2013, Biomaterials.

[9]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[10]  F Rupp,et al.  High surface energy enhances cell response to titanium substrate microstructure. , 2005, Journal of biomedical materials research. Part A.

[11]  B. Blombäck,et al.  A two-step fibrinogen–fibrin transition in blood coagulation , 1978, Nature.

[12]  E Ruoslahti,et al.  RGD and other recognition sequences for integrins. , 1996, Annual review of cell and developmental biology.

[13]  L Sennerby,et al.  Histologic evaluation of the bone integration of TiO(2) blasted and turned titanium microimplants in humans. , 2001, Clinical oral implants research.

[14]  K. Kim,et al.  Surface Modification of Titanium for Biomaterial Applications , 2010 .

[15]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[16]  Jianfeng Liu,et al.  The hemocompatibility and the reabsorption function of TiO2 nanotubes biomembranes , 2012 .

[17]  M. Yamada,et al.  Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model. , 2010, Biomaterials.

[18]  D. Mihov,et al.  SOME BIOCOMPATIBLE MATERIALS USED IN MEDICAL PRACTICE , 2010 .

[19]  Thomas J Webster,et al.  Effects of different sterilization techniques and varying anodized TiO₂ nanotube dimensions on bacteria growth. , 2013, Journal of biomedical materials research. Part B, Applied biomaterials.

[20]  K. Popat,et al.  Hemocompatibility of titania nanotube arrays. , 2010, Journal of biomedical materials research. Part A.

[21]  A. Mazare,et al.  Calcination condition effect on microstructure, electrochemical and hemolytic behavior of amorphous nanotubes on Ti6Al7Nb alloy , 2014 .

[22]  A. Iglič,et al.  Adhesion of osteoblasts to a vertically aligned TiO2 nanotube surface. , 2013, Mini reviews in medicinal chemistry.

[23]  J. Macák,et al.  Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. , 2009, Angewandte Chemie.

[24]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[25]  T. Hussain,et al.  Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties , 2012 .

[26]  T Albrektsson,et al.  Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants. , 1998, Clinical oral implants research.

[27]  Somnath C. Roy,et al.  The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. , 2007, Biomaterials.

[28]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[29]  U. van Rienen,et al.  Adhesion of osteoblasts to a nanorough titanium implant surface , 2011, International journal of nanomedicine.

[30]  M. Bakir Haemocompatibility of titanium and its alloys , 2012, Journal of biomaterials applications.

[31]  K. Khor,et al.  Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. , 2002, Biomaterials.

[32]  B. Conway,et al.  Modern Aspects of Electrochemistry: No. 6 , 1968 .

[33]  Thomas J Webster,et al.  The relationship between the nanostructure of titanium surfaces and bacterial attachment. , 2010, Biomaterials.

[34]  M. Hampden‐Smith,et al.  Chemical vapor deposition of metals: Part 2. Overview of selective CVD of Metals , 1995 .

[35]  B D Boyan,et al.  Role of material surfaces in regulating bone and cartilage cell response. , 1996, Biomaterials.

[36]  Jack E. Lemons,et al.  Medical Applications of Titanium and Its Alloys: The Material and Biological Issues , 1996 .

[37]  J. Jansen,et al.  Dental Implant Surface Enhancement and Osseointegration , 2011 .

[38]  K. Gulati,et al.  Controlling Drug Release from Titania Nanotube Arrays Using Polymer Nanocarriers and Biopolymer Coating , 2011 .

[39]  T. Hanawa,et al.  Composition of surface oxide film of titanium with culturing murine fibroblasts L929. , 2004, Biomaterials.

[40]  E. H. Andrews,et al.  Oxide morphology and adhesive bonding on titanium surfaces , 1984 .

[41]  R. Advíncula,et al.  Surface modification of surface sol-gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies. , 2005, Colloids and surfaces. B, Biointerfaces.

[42]  T. Hanawa,et al.  Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. , 1998, Journal of biomedical materials research.

[44]  P. Schmuki,et al.  Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents , 2010 .

[45]  A. Mazare,et al.  Electrochemical behavior in simulated body fluid of TiO2 nanotubes on TiAlNb alloy elaborated in various anodizing electrolyte , 2014 .

[46]  B D Boyan,et al.  Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). , 1995, Journal of biomedical materials research.

[47]  David F. Williams On the mechanisms of biocompatibility. , 2008, Biomaterials.

[48]  M. Morra Biochemical modification of titanium surfaces: peptides and ECM proteins. , 2006, European cells & materials.

[49]  M. Dard,et al.  Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs. , 2007, Journal of clinical periodontology.

[50]  David F. Williams On the nature of biomaterials. , 2009, Biomaterials.

[51]  T. Webster,et al.  Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions , 2013, International journal of nanomedicine.

[52]  Tapash R. Rautray,et al.  Ion implantation of titanium based biomaterials , 2011 .

[53]  H. Schliephake,et al.  Functionalization of dental implant surfaces using adhesion molecules. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[54]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[55]  D Buser,et al.  Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. , 1998, Journal of biomedical materials research.

[56]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[57]  K. Kim,et al.  Electrochemical surface modification of titanium in dentistry. , 2009, Dental materials journal.

[58]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[59]  J. Macák,et al.  250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering , 2007 .

[60]  S. Bauer,et al.  Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[61]  J. Ziaja Titanium Alloys - Advances in Properties Control , 2013 .

[62]  L. Scheideler,et al.  Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. , 2006, Journal of biomedical materials research. Part A.

[63]  S. Grigorescu,et al.  The two step nanotube formation on TiZr as scaffolds for cell growth. , 2014, Bioelectrochemistry.

[64]  E. Vasile,et al.  Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. , 2012, Bioelectrochemistry.

[65]  Min Lai,et al.  Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. , 2011, Biomacromolecules.

[66]  I. Kangasniemi,et al.  Bonelike Hydroxyapatite Induction by a Gel‐Derived Titania on a Titanium Substrate , 1994 .

[67]  D. K. Schwartz,et al.  Mechanisms and kinetics of self-assembled monolayer formation. , 2001, Annual review of physical chemistry.

[68]  J. Park,et al.  Engineering biocompatible implant surfaces , 2013 .

[69]  M. Donachie Titanium: A Technical Guide , 1988 .

[70]  Joon B. Park Biomaterials:An Introduction , 1992 .

[71]  Jonathan Black,et al.  Handbook of Biomaterial Properties , 1998, Springer US.

[72]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[73]  Nidhi Adya,et al.  Corrosion in titanium dental implants: literature review , 2005 .

[74]  T. Webster,et al.  Anodized 20 nm diameter nanotubular titanium for improved bladder stent applications , 2011, International journal of nanomedicine.

[75]  Jia-Hong Huang,et al.  Role of process parameters in the texture evolution of TiN films deposited by hollow cathode discharge ion plating , 2001 .

[76]  J. Planell,et al.  Spatial organization of osteoblast fibronectin matrix on titanium surfaces: effects of roughness, chemical heterogeneity and surface energy. , 2010, Acta biomaterialia.

[77]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[78]  Y. Shibata,et al.  Anode Glow Discharge Plasma Treatment Enhances Calcium Phosphate Adsorption onto Titanium Plates , 2002, Journal of dental research.

[79]  Michael V Sefton,et al.  Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. , 2004, Biomaterials.

[80]  H. Choe,et al.  Nanotube morphology changes for Ti–Zr alloys as Zr content increases , 2009 .

[81]  T. Driskell Early History of Calcium Phosphate Materials and Coatings , 1994 .

[82]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[83]  Thomas J Webster,et al.  Diameter of titanium nanotubes influences anti-bacterial efficacy , 2011, Nanotechnology.

[84]  M. Ginsberg,et al.  Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. , 1991, Trends in biochemical sciences.

[85]  Milton Ohring,et al.  Materials science of thin films : deposition and structure , 2002 .

[86]  Y. Shibata,et al.  Anode Glow Discharge Plasma Treatment of Titanium Plates Facilitates Adsorption of Extracellular Matrix Proteins to the Plates , 2005, Journal of dental research.

[87]  M. Gardon,et al.  Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review , 2014, Journal of Thermal Spray Technology.

[88]  P. Kavanagh,et al.  Complications of ureteral stent placement. , 2002, Radiographics : a review publication of the Radiological Society of North America, Inc.

[89]  Sepideh Minagar,et al.  Fabrication and characterization of TiO2-ZrO2-ZrTiO4 nanotubes on TiZr alloy manufactured via anodization. , 2014, Journal of materials chemistry. B.

[90]  J. Bonnet,et al.  Tunable functionality and toxicity studies of titanium dioxide nanotube layers , 2010, 1004.0322.

[91]  C. Klein,et al.  Plasma sprayed coatings of hydroxylapatite. , 1987, Journal of biomedical materials research.

[92]  T. Webster,et al.  The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation , 2009, Nanotechnology.

[93]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[94]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[95]  B. Saltzman Ureteral Stents: Indications, Variation and Complications , 1989 .

[96]  Hongwei Ni,et al.  Antibacterial nano-structured titania coating incorporated with silver nanoparticles. , 2011, Biomaterials.

[97]  S. Bauer,et al.  Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[98]  W. Simka,et al.  Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys , 2013 .

[99]  Thomas J Webster,et al.  Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces , 2008, International journal of nanomedicine.

[100]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[101]  K. Kim,et al.  Surface modification of titanium and titanium alloys by ion implantation. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[102]  P. Branemark,et al.  Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. , 1977, Scandinavian journal of plastic and reconstructive surgery. Supplementum.

[103]  Mathis O. Riehle,et al.  Biocompatibility: Nanomaterials for cell- and tissue engineering , 2005 .

[104]  Andrea Bagno,et al.  Surface treatments and roughness properties of Ti-based biomaterials , 2004, Journal of materials science. Materials in medicine.

[105]  P. Schmuki,et al.  Modulated TiO2 nanotube stacks and their use in interference sensors , 2010 .

[106]  S. Bauer,et al.  Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. , 2012, Small.