Energy approach to brittle fracture in strain-gradient modelling

In this paper, we exploit some results in the theory of irreversible phenomena to address the study of quasi-static brittle fracture propagation in a two-dimensional isotropic continuum. The elastic strain energy density of the body has been assumed to be geometrically nonlinear and to depend on the strain gradient. Such generalized continua often arise in the description of microstructured media. These materials possess an intrinsic length scale, which determines the size of internal boundary layers. In particular, the non-locality conferred by this internal length scale avoids the concentration of deformations, which is usually observed when dealing with local models and which leads to mesh dependency. A scalar Lagrangian damage field, ranging from zero to one, is introduced to describe the internal state of structural degradation of the material. Standard Lamé and second-gradient elastic coefficients are all assumed to decrease as damage increases and to be locally zero if the value attained by damage is one. This last situation is associated with crack formation and/or propagation. Numerical solutions of the model are provided in the case of an obliquely notched rectangular specimen subjected to monotonous tensile and shear loading tests, and brittle fracture propagation is discussed.

[1]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[2]  G. Francfort,et al.  GRIFFITH THEORY OF BRITTLE FRACTURE REVISITED: MERITS AND DRAWBACKS , 2005 .

[3]  Claudia Comi,et al.  Computational modelling of gradient‐enhanced damage in quasi‐brittle materials , 1999 .

[4]  Francesco dell’Isola,et al.  Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives , 2017 .

[5]  L. Lorenzis,et al.  Phase-field modeling of ductile fracture , 2015, Computational Mechanics.

[6]  A. Misra,et al.  Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model , 2015 .

[7]  Francesco dell’Isola,et al.  Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices , 2015 .

[8]  A. Della Corte,et al.  The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[10]  Francesco dell’Isola,et al.  The complete works of Gabrio Piola: Volume I Commented English Translation - English and Italian Edition , 2014 .

[11]  G. Lancioni Numerical results from different variational theories of fracture , 2010 .

[12]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[13]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[14]  Ivan Giorgio,et al.  Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures , 2016 .

[15]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[16]  A. Misra,et al.  Micromechanical model for viscoelastic materials undergoing damage , 2013 .

[17]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[18]  Yuri Bazilevs,et al.  A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis , 2016 .

[19]  Jean-Jacques Marigo,et al.  From Gradient Damage Laws to Griffith’s Theory of Crack Propagation , 2013 .

[20]  J. Marigo,et al.  An overview of the modelling of fracture by gradient damage models , 2016 .

[21]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[22]  Francesco dell’Isola,et al.  Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions , 2017, Journal of elasticity.

[23]  B. M. Fulk MATH , 1992 .

[24]  B. D. Reddy,et al.  The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity , 2011 .

[25]  B. Bourdin Image segmentation with a finite element method , 1999 .

[26]  B. D. Reddy,et al.  The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity , 2011 .

[27]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[28]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[29]  M. Kuna,et al.  A first-order strain gradient damage model for simulating quasi-brittle failure in porous elastic solids , 2013 .

[30]  Jean-Jacques Marigo,et al.  The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models , 2011 .

[31]  Luca Placidi,et al.  Two-dimensional strain gradient damage modeling: a variational approach , 2018 .

[32]  H. Altenbach,et al.  Foundations of Micropolar Mechanics , 2012 .

[33]  A. Raina,et al.  Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory , 2016 .

[34]  A. Misra,et al.  Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity , 2012 .

[35]  Daniel Guilbaud,et al.  Gradient damage modeling of brittle fracture in an explicit dynamics context , 2016 .

[36]  Ganesh Thiagarajan,et al.  Fracture simulation for anisotropic materials using a virtual internal bond model , 2004 .

[37]  W. Müller,et al.  Theory and computation of higher gradient elasticity theories based on action principles , 2017 .

[38]  Francesco dell’Isola,et al.  Variational principles are a powerful tool also for formulating field theories , 2011 .

[39]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[40]  Luca Placidi,et al.  A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model , 2016 .

[41]  R. Huiskes,et al.  Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement. , 2003, Journal of biomechanics.

[42]  H. Dumontet,et al.  A micro-mechanics based strain gradient damage model: formulation and solution for the torsion of a cylindrical bar , 2016 .

[43]  R. Toupin Elastic materials with couple-stresses , 1962 .

[44]  Massimo Cuomo,et al.  Forms of the dissipation function for a class of viscoplastic models , 2017 .

[45]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[46]  Laura De Lorenzis,et al.  A phase-field model for ductile fracture at finite strains and its experimental verification , 2016 .

[47]  M. Fagone,et al.  Model of Anisotropic Elastoplasticity in Finite Deformations Allowing for the Evolution of the Symmetry Group , 2015 .

[48]  J. Dirrenberger,et al.  A complete description of bi-dimensional anisotropic strain-gradient elasticity , 2015 .

[49]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[50]  Massimo Cuomo,et al.  An enriched finite element for crack opening and rebar slip in reinforced concrete members , 2012, International Journal of Fracture.

[51]  P. Seppecher,et al.  Cauchy Tetrahedron Argument Applied to Higher Contact Interactions , 2015, Archive for Rational Mechanics and Analysis.

[52]  Jean-François Dubé,et al.  Calibration of nonlocal damage model from size effect tests , 2003 .

[53]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[54]  L. Lorenzis,et al.  Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements , 2016 .

[55]  Ivan Giorgio,et al.  Finite-Element Analysis of Polyhedra under Point and Line Forces in Second-Strain Gradient Elasticity , 2017 .

[56]  Giovanni Lancioni,et al.  The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris , 2009 .

[57]  L. Contrafatto,et al.  A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates , 2016 .

[58]  Stéphane Andrieux,et al.  Analysis of non-local models through energetic formulations , 2003 .

[59]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[60]  L. Placidi,et al.  Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity , 2017 .

[61]  Jean-Jacques Marigo,et al.  Constitutive relations in plasticity, damage and fracture mechanics based on a work property , 1989 .

[62]  T. Lekszycki,et al.  Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity , 2016 .

[63]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[64]  Tymofiy Gerasimov,et al.  A line search assisted monolithic approach for phase-field computing of brittle fracture , 2016 .

[65]  A. Misra,et al.  A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results , 2018, Mathematics and Mechanics of Complex Systems.

[66]  Rodney Hill,et al.  A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY , 1948 .

[67]  Massimo Cuomo,et al.  A framework of elastic–plastic damaging model for concrete under multiaxial stress states , 2006 .

[68]  B. Bourdin Numerical implementation of the variational formulation for quasi-static brittle fracture , 2007 .

[69]  Krishna Garikipati,et al.  Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains , 2014, 1404.0094.

[70]  Antonin Chambolle,et al.  Implementation of an adaptive finite-element approximation of the Mumford-Shah functional , 2000, Numerische Mathematik.

[71]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[72]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[73]  G. Piero,et al.  A variational model for fracture mechanics - Numerical experiments , 2007 .

[74]  G. Ventura,et al.  Numerical analysis of Augmented Lagrangian algorithms in complementary elastoplasticity , 2004 .

[75]  J. Marigo,et al.  Approche variationnelle de l'endommagement : I. Les concepts fondamentaux , 2010 .

[76]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[77]  Christopher J. Larsen,et al.  A time-discrete model for dynamic fracture based on crack regularization , 2011 .

[78]  M. Kuna,et al.  Constitutive equations for porous plane-strain gradient elasticity obtained by homogenization , 2009 .

[79]  Emilio Turco,et al.  A three-dimensional B-spline boundary element , 1998 .

[80]  J. Marigo,et al.  Variational Approach to Dynamic Brittle Fracture via Gradient Damage Models , 2015 .

[81]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .

[82]  Alessandro Reali,et al.  Phase-field description of brittle fracture in plates and shells , 2016 .

[83]  Ivan Giorgio,et al.  Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model , 2017 .

[84]  Jean-Jacques Marigo,et al.  Approche variationnelle de l'endommagement : II. Les modèles à gradient , 2010 .

[85]  Francesco dell’Isola,et al.  Geometrically nonlinear higher-gradient elasticity with energetic boundaries , 2013 .

[86]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[87]  Victor A. Eremeyev,et al.  Strain gradient elasticity with geometric nonlinearities and its computational evaluation , 2015 .

[88]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[89]  Leopoldo Greco,et al.  A variational model based on isogeometric interpolation for the analysis of cracked bodies , 2014 .

[90]  Jean-François Molinari,et al.  Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms , 2017, International Journal of Fracture.

[91]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[92]  Victor A. Eremeyev,et al.  Material symmetry group and constitutive equations of micropolar anisotropic elastic solids , 2016 .

[93]  H. Altenbach,et al.  Equilibrium of a second-gradient fluid and an elastic solid with surface stresses , 2014 .