Near- and off-resonant optical limiting properties of gold–silver alloy nanoparticles for intense nanosecond laser pulses

The near- and off-resonant optical limiting properties of gold, silver and gold?silver alloy nanoparticles in methyl 2-methylprop-2-enoate for nanosecond laser pulses are presented. The nanoparticles are generated by picosecond pulsed laser ablation in liquid having hydrodynamic diameters from 26 to 30?nm. We use a Q-switched Nd:YAG laser working at a wavelength of 1064 or 532?nm, with a pulse width of 3?ns to characterize their behaviour by laser energy and fluence dependent transmittance measurements. To elucidate the contribution of nonlinear scattering to the optical limiting properties the scattered light energy at an angle of 90??is measured. The experimental results show that these nanoparticles have a strong nonlinear attenuation which can be attributed to intraband, interband and free carrier absorption and a thermal-induced scattering only at high input energies. Our results indicate in addition that the surface plasmon resonance does not contribute to the nonlinear processes at high input energies.

[1]  Jacques A. Delaire,et al.  Optical Limitation induced by Gold Clusters. 1. Size Effect , 2000 .

[2]  Gunnar Ritt,et al.  Protection of optical systems against laser radiation , 2009, Security + Defence.

[3]  R. Ganeev,et al.  Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation , 2007 .

[4]  Kamjou Mansour,et al.  Optical nonlinearities in carbon black particles , 1990, Defense, Security, and Sensing.

[5]  Richard C. Hollins,et al.  Materials for optical limiters , 1999 .

[6]  Boris N. Chichkov,et al.  Pulsed Laser Ablation of Zinc in Tetrahydrofuran: Bypassing the Cavitation Bubble , 2010 .

[7]  P. Wagener,et al.  Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites. , 2011, Physical chemistry chemical physics : PCCP.

[8]  S. Barcikowski,et al.  Improving Laser Ablation of Zirconia by Liquid Films: Multiple Influence of Liquids on Surface Machining and Nanoparticle Generation , 2009 .

[9]  P. Mojzeš,et al.  Probing Applications of Laser-Ablated Ag Colloids in SERS Spectroscopy: Improvement of Ablation Procedure and SERS Spectral Testing , 1997 .

[10]  M. Meunier,et al.  Synthesis of Size-Tunable Polymer-Protected Gold Nanoparticles by Femtosecond Laser-Based Ablation and Seed Growth , 2009 .

[11]  Reji Philip,et al.  Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters , 2000 .

[12]  Yasuyuki Tsuboi,et al.  Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions , 2008 .

[13]  T. Radhakrishnan,et al.  Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film , 2007 .

[14]  Hongan Ye,et al.  Size effect of optical limiting in gold nanoparticles , 2007 .

[15]  Shiliang Qu,et al.  Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands , 2002 .

[16]  P. Prem Kiran,et al.  Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 Sol-Gel films , 2004 .

[17]  D Vincent,et al.  Optical limiting with C(60) and other fullerenes. , 1997, Applied optics.

[18]  W. Blau,et al.  Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes , 2008 .

[19]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[20]  R. Sutherland,et al.  Nonlinear absorption study of a C60-toluene solution. , 1993, Optics letters.

[21]  Jun Wang,et al.  Inorganic and hybrid nanostructures for optical limiting , 2009 .

[22]  Alan D. Bristow,et al.  Nonlinear absorption in Au films: Role of thermal effects , 2007 .

[23]  A. K. Sood,et al.  Optical limiting in single-walled carbon nanotube suspensions , 2000 .

[24]  Kwan Kim,et al.  Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. , 2001, Chemical communications.

[25]  Robert B. Martin,et al.  NANOMATERIALS AS OPTICAL LIMITERS , 2000 .

[26]  Rashid A. Ganeev,et al.  Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices , 2006 .

[27]  Jason E. Riggs,et al.  Organic and inorganic optical limiting materials. From fullerenes to nanoparticles , 1999 .

[28]  T. Kondow,et al.  Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution , 2000 .

[29]  H. Zeng,et al.  Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. , 2005, The journal of physical chemistry. B.

[30]  J. Bigot,et al.  Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals. , 2006, Optics express.

[31]  Timurbek Usmanov,et al.  Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals , 2001 .

[32]  Michel Meunier,et al.  Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water , 2003 .

[33]  M. Mostafavi,et al.  Optical limitation induced by gold clusters: Mechanism and efficiency , 2001 .

[34]  B. Chichkov,et al.  Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers , 2008 .

[35]  M. El-Sayed,et al.  Picosecond Dynamics of Colloidal Gold Nanoparticles , 1996 .

[36]  T. Pradeep,et al.  AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting , 2005 .

[37]  Reji Philip,et al.  Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain , 2003 .

[38]  François Hache,et al.  Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects , 1986 .

[39]  H. Ming,et al.  Nonlinear optical properties of silver colloidal solution by in situ synthesis technique , 2008 .

[40]  Gunnar Ritt,et al.  Optical limiting performance of nanoparticles in liquid and solid media , 2009, Security + Defence.

[41]  M. Meneghetti,et al.  Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. , 2009, Physical chemistry chemical physics : PCCP.

[42]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[43]  Shiliang Qu,et al.  A theoretical and experimental study on optical limiting in platinum nanoparticles , 2002 .

[44]  J. Qiu,et al.  Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser , 2006 .

[45]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[46]  G. Hartland,et al.  Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation , 1998 .

[47]  Wei Ji,et al.  Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses. , 2009, ACS applied materials & interfaces.

[48]  Pankaj Pathak,et al.  Optical limiting of silver-containing nanoparticles , 2007 .

[49]  T. F. Boggess,et al.  A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials , 1993 .

[50]  James E Hutchison,et al.  Toward greener nanosynthesis. , 2007, Chemical reviews.