Finite element analysis of sandwich plates: An overview

Abstract Many finite element models have been proposed for the analysis of sandwich plates. In general, these elements can be classified into two broad streams. The first is based on the assumed displacement approach, and the second on the assumed-stress hybrid approach. Within each stream, the characteristics of the elements vary greatly in terms of the formulation complexity, accuracy and applicability. An overview is given of the state-of-the-art finite element analysis applied to sandwich plate structures.

[1]  O. Orringer,et al.  Alternate Hybrid-Stress Elements for Analysis of Multilayer Composite Plates , 1977 .

[2]  David R. Owen,et al.  A refined analysis of laminated plates by finite element displacement methods—II. Vibration and stability , 1987 .

[3]  W. J. Liou,et al.  A three-dimensional hybrid-stress finite element formulation for free vibrations of laminated composite plates , 1987 .

[4]  H. G. Allen Analysis and design of structural sandwich panels , 1969 .

[5]  Tarun Kant,et al.  Flexural analysis of laminated composites using refined higher-order C ° plate bending elements , 1988 .

[6]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[7]  K. M. Ahmed,et al.  Free vibration of curved sandwich beams by the method of finite elements , 1971 .

[8]  P. G. Bergan,et al.  Quadrilateral plate bending elements with shear deformations , 1984 .

[9]  P. Tong,et al.  Finite Element Solutions for Laminated Thick Plates , 1972 .

[10]  J. N. Reddy,et al.  A penalty plate‐bending element for the analysis of laminated anisotropic composite plates , 1980 .

[12]  A hybrid/mixed model finite element analysis for buckling of moderately thick plates , 1982 .

[13]  M. M. Hrabok,et al.  A review and catalogue of plate bending finite elements , 1984 .

[14]  L. M. Habip A review of recent russian work on sandwich structures. , 1964 .

[15]  G. D. Sims,et al.  Mechanical properties and design of sandwich materials , 1986 .

[16]  David R. Owen,et al.  A refined analysis of laminated plates by finite element displacement methods—I. Fundamentals and static analysis , 1987 .

[17]  H. Kraus A hybrid stiffness matrix for orthotropic sandwich plates with thick faces , 1977 .

[18]  K. H. Ha,et al.  Rectangular hybrid elements for the analysis of sandwich plate structures , 1987 .

[19]  Charles W. Bert,et al.  Composite Material Mechanics: Structural Mechanics , 1974 .

[20]  H. V. Lakshminarayana,et al.  A shear‐flexible triangular finite element model for laminated composite plates , 1984 .

[21]  C. T. Sun,et al.  A Finite Element Iterative Approach for Analysis of Laminated Composite Structural Elements , 1987 .

[22]  Paul Fazio,et al.  Flexural behaviour of sandwich floor assembly , 1978 .

[23]  Ozden O. Ochoa,et al.  Through‐the‐thickness stress predictions for laminated plates of advanced composite materials , 1985 .

[24]  Robert E. Miller,et al.  A rectangular finite element for moderately thick flat plates , 1988 .

[25]  Yunliang Ding,et al.  Optimum design of sandwich constructions , 1987 .

[26]  Charles W. Bert,et al.  A critical evaluation of new plate theories applied to laminated composites , 1984 .

[28]  Ahmed E. Salama,et al.  Buckling of Multilayer Plates by Finite Elements , 1971 .

[29]  Gajbir Singh,et al.  Non-linear vibrations of sandwich plates , 1986 .

[30]  J. J. Azar Bending theory for multilayer orthotropic sandwich plates. , 1968 .

[31]  Pin Tong,et al.  Rationalization in Deriving Element Stiffness Matrix by Assumed Stress Approach , 1968 .

[32]  C. T. Sun,et al.  A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates , 1987 .

[33]  Raghu Natarajan,et al.  Finite element analysis of laminated composite plates , 1979 .

[34]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[35]  R. R. Kumar,et al.  Free vibrations of multilayered thick composite shells , 1988 .

[36]  S. W. Lee,et al.  A nine-node assumed-strain finite element for composite plates and shells , 1987 .

[37]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[38]  Robert L. Spilker,et al.  A hybrid-stress finite-element formulation for thick multilayer laminates , 1980 .

[39]  O. C. Zienkiewicz,et al.  A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .

[40]  K. M. Ahmed,et al.  Static and dynamic analysis of sandwich structures by the method of finite elements , 1971 .

[41]  S. Lee,et al.  A solid element formulation for large deflection analysis of composite shell structures , 1988 .

[42]  Samuel Verbiese,et al.  Use of the Hybrid-Stress Finite-Element Model for the Static and Dynamic Analysis of Multilayer Composite Plates and Shells. , 1976 .

[43]  Gajbir Singh,et al.  Large-deflection and nonlinear vibration of multilayered sandwich plates , 1987 .

[44]  Ahmed K. Noor,et al.  Shear-Flexible Finite-Element Models of Laminated Composite Plates and Shells. , 1975 .

[45]  Ahmed K. Noor,et al.  Finite element analysis of anisotropic plates , 1977 .

[46]  Robert L. Spilker,et al.  Hybrid-stress eight-node elements for thin and thick multilayer laminated plates , 1982 .

[47]  Paul Fazio,et al.  Sandwich Plate Structure Analysis by Finite Element , 1974 .

[48]  Robert D. Cook,et al.  Two hybrid elements for analysis of thick, thin and sandwich plates , 1972 .

[49]  Y. K. Cheung,et al.  Bending and vibration of multilayer sandwich beams and plates , 1973 .

[50]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[51]  Athol J. Carr,et al.  A shear deformable finite element for the analysis of general shells of revolution , 1989 .

[52]  E. Reissner ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .

[53]  M. Gellert,et al.  A new method for derivation of locking‐free plate bending finite elements via mixed/hybrid formulation , 1988 .

[54]  J. Whitney,et al.  Stress Analysis of Thick Laminated Composite and Sandwich Plates , 1972 .

[55]  R. Gallagher,et al.  An approach to the inclusion of transverse shear deformation in finite element plate bending analysis , 1984 .

[56]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[57]  A. Mawenya,et al.  Finite element bending analysis of multilayer plates , 1974 .