Model and algorithms for the Multicommodity Traveling Salesman Problem

We are introducing in this article the Multicommodity Traveling Salesman Problem (MTSP), where the objective is to deliver all the demands of different commodities by a tour that minimizes the sum of the fixed and variable costs for the selected arcs. The MTSP yields then a large scale mixed integer linear programming problem. In this article we devise a Lagrangean based heuristic approach to tackle this more general TSP variant.

[1]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[2]  Klaus-Peter Zauner,et al.  Molecular Information Technology , 2005 .

[3]  Abilio Lucena,et al.  Time-dependent traveling salesman problem-the deliveryman case , 1990, Networks.

[4]  Yasuhiro Suzuki,et al.  Symbolic chemical system based on abstract rewriting system and its behavior pattern , 2006, Artificial Life and Robotics.

[5]  M Conrad,et al.  Information processing in molecular systems. , 1972, Currents in modern biology.

[6]  M. Feinberg,et al.  Dynamics of open chemical systems and the algebraic structure of the underlying reaction network , 1974 .

[7]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[8]  Markus Eiswirth,et al.  Feedback loops for chaos in activator-inhibitor systems. , 2005, The Journal of chemical physics.

[9]  George B. Dantzig,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, Oper. Res..

[10]  Matteo Fischetti,et al.  The Delivery Man Problem and Cumulative Matroids , 1993, Oper. Res..

[11]  Marshall L. Fisher,et al.  An Applications Oriented Guide to Lagrangian Relaxation , 1985 .

[12]  Klaus-Peter Zauner,et al.  From Prescriptive Programming of Solid-State Devices to Orchestrated Self-organisation of Informed Matter , 2004, UPP.

[13]  A Hjelmfelt,et al.  Chemical implementation of neural networks and Turing machines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Peter Dittrich,et al.  Chemical Computing , 2004, UPP.

[15]  A. Adamatzky Universal Dynamical Computation in Multidimensional Excitable Lattices , 1998 .