A similarity measure for temporal pattern discovery in time series data generated by IoT

Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating temporal patterns and understanding the underlying temporal trends is much more challenging in the case of time stamped temporal data. At present, existing approaches do not reveal seasonal patterns, emerging or diminishing patterns. Determining similar temporal patterns and unearthing eccentric patterns require an efficient dissimilarity measure. This research addresses the similarity measure for revealing similar temporal patterns from time series data generated by IoT.

[1]  Klaus Moessner,et al.  Neighbor Discovery for Opportunistic Networking in Internet of Things Scenarios: A Survey , 2015, IEEE Access.

[2]  Bassam Al Kasasbeh,et al.  An Improved Secure SIP Registration Mechanism to Avoid VoIP Threats , 2016, Int. J. Cloud Appl. Comput..

[3]  Latifa Ben Arfa Rabai,et al.  A Security Framework for Secure Cloud Computing Environments , 2016, Int. J. Cloud Appl. Comput..

[4]  Luigi Atzori,et al.  Friendship Selection in the Social Internet of Things: Challenges and Possible Strategies , 2015, IEEE Internet of Things Journal.

[5]  Shadi Aljawarneh,et al.  Investigations of automatic methods for detecting the polymorphic worms signatures , 2016, Future Gener. Comput. Syst..

[6]  Unil Yun,et al.  A new efficient approach for mining uncertain frequent patterns using minimum data structure without false positives , 2017, Future Gener. Comput. Syst..

[7]  Luigi Atzori,et al.  Trustworthiness Management in the Social Internet of Things , 2014, IEEE Transactions on Knowledge and Data Engineering.

[8]  Thamer Al-Rousan,et al.  Cloud Computing for Global Software Development: Opportunities and Challenges , 2015, Int. J. Cloud Appl. Comput..

[9]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[10]  Mohsen Guizani,et al.  Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications , 2015, IEEE Communications Surveys & Tutorials.

[11]  Vassilis Christophides,et al.  Mining Usage Patterns in Residential Intranet of Things , 2016, ANT/SEIT.

[12]  Nada Lavrac,et al.  ClowdFlows: Online workflows for distributed big data mining , 2017, Future Gener. Comput. Syst..

[13]  Beihong Jin,et al.  Specifying and detecting spatio-temporal events in the internet of things , 2013, Decis. Support Syst..

[14]  Gugulothu Narsimha,et al.  Intrusion Detection A Text Mining Based Approach , 2016, ArXiv.

[15]  Noël Crespi,et al.  The Cluster Between Internet of Things and Social Networks: Review and Research Challenges , 2014, IEEE Internet of Things Journal.

[16]  Shusaku Tsumoto,et al.  Similarity-based behavior and process mining of medical practices , 2014, Future Gener. Comput. Syst..

[17]  Siobhán Clarke,et al.  Middleware for Internet of Things: A Survey , 2016, IEEE Internet of Things Journal.

[18]  Bhaskar Krishnamachari,et al.  Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition , 2016, Comput. Commun..

[19]  Shadi Aljawarneh,et al.  Cloud Security Engineering: Avoiding Security Threats the Right Way , 2011, Int. J. Cloud Appl. Comput..

[20]  Beihong Jin,et al.  Spatio-Temporal Events in the Internet of Things , 2010, 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing.

[21]  Gugulothu Narsimha,et al.  An Approach for Intrusion Detection Using Novel Gaussian Based Kernel Function , 2016, J. Univers. Comput. Sci..

[22]  Gugulothu Narsimha,et al.  A Novel Similarity Measure for Intrusion Detection using Gaussian Function , 2016, ArXiv.

[23]  Ruchika Asija,et al.  Healthcare SaaS Based on a Data Model with Built-In Security and Privacy , 2016, Int. J. Cloud Appl. Comput..

[24]  François Carrez,et al.  A Practical Evaluation of Information Processing and Abstraction Techniques for the Internet of Things , 2015, IEEE Internet of Things Journal.

[25]  Manuel Díaz,et al.  State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing , 2016, J. Netw. Comput. Appl..

[26]  Alptekin Küpçü,et al.  Research issues for privacy and security of electronic health services , 2017, Future Gener. Comput. Syst..