A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 C, SrBr2� 6H2O and LaCl3� 7H2O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m � 3 and 89 kW h m � 3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates without condensation heat recovery appears also to be very low (lower than 40% and typically 25%). Even for application requiring lower discharging temperature like 35 C, the expectable efficiency and net energy storage den

[1]  X. Py,et al.  The size of sorbents in low pressure sorption or thermochemical energy storage processes , 2014 .

[2]  S. Sarig,et al.  The melting point adjustment of calcium chloride hexahydrate by addition of potassium chloride or calcium bromide hexahydrate , 1985 .

[3]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[4]  Lingai Luo,et al.  A review on long-term sorption solar energy storage , 2009 .

[5]  G. Tanguy,et al.  Thermochemical Storage: First Results of Pilot Storage System with Moist Air , 2011 .

[6]  W. Voigt,et al.  Solid–liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials , 2002 .

[7]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[8]  Lingai Luo,et al.  Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system , 2012 .

[9]  J. Majzlan,et al.  Internally consistent thermodynamic data for magnesium sulfate hydrates , 2009 .

[10]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[11]  I. Chou,et al.  Determination of epsomite-hexahydrite equilibria by the humidity-buffer technique at 0.1 MPa with implications for phase equilibria in the system MgSO4-H2O. , 2003, Astrobiology.

[12]  K. Wieczorek-Ciurowa,et al.  The thermal transformations in Zn(No3)2-H2O (1:6) system , 2003 .

[13]  A. Petruzzelli,et al.  Understanding the development trends of low-carbon energy technologies: A patent analysis , 2014 .

[14]  S. Mishra,et al.  Thermal dehydration and decomposition of nickel chloride hydrate (NiCl2·xH2O) , 1992 .

[15]  M. Maneva,et al.  On the thermal decomposition of Zn(NO3)2·6H2O and its deuterated analogue , 1989 .

[16]  Vincent Goetz,et al.  Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW h by a solid/gas reaction , 2008 .

[17]  Thomas Schmidt,et al.  Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage - kinetics and energy release , 2012 .

[18]  Olaf Kolditz,et al.  The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading , 2014 .

[19]  B. Michel Procédé thermochimique pour le stockage intersaisonnier de l’énergie solaire : modélisation multi-échelles et expérimentation d’un prototype sous air humide , 2012 .

[20]  Ha Herbert Zondag,et al.  Characterization of the sorption process in thermochemical materials for seasonal solar heat storage application , 2012 .

[21]  F. Kuznik,et al.  Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage , 2011 .

[22]  Yuri I. Aristov,et al.  Adsorption properties of composite materials (LiCl + LiBr)/silica , 2009 .

[23]  Ha Herbert Zondag,et al.  Characterization of Salt Hydrates for Compact Seasonal Thermochemical Storage , 2009 .

[24]  A. Freni,et al.  Selective water sorbent for solid sorption chiller: experimental results and modelling , 2004 .

[25]  G. Guarini,et al.  The dehydration of Na2S2O3· 5H2O single crystals as studied by thermal analysis and optical microscopy , 1988 .

[26]  S. Mauran,et al.  Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed , 2012 .

[27]  Andreas Hauer,et al.  Mobile Sorption Heat Storage in Industrial Waste Heat Recovery , 2015 .

[28]  Shengwei Wang,et al.  Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage , 2006 .

[29]  H. Jacobs,et al.  Hydroxidmonohydrate des Kaliums und Rubidiums; Verbindungen, deren atomanordnungen die Schreibweise K(H2O)OH bzw. Rb(H2O)OH nahelegen , 1984 .

[30]  J.B.J. Veldhuis,et al.  Determination of structural, thermodynamic and phase properties in the Na2S–H2O system for application in a chemical heat pump , 2002 .

[31]  L. W. Wang,et al.  Experimental investigation of an innovative dual-mode chemisorption refrigeration system based on multifunction heat pipes , 2008 .

[32]  Ha Herbert Zondag,et al.  An evaluation of the economical feasibility of seasonal sorption heat storage , 2010 .

[33]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[34]  Stéphanie Hongois Stockage de chaleur inter-saisonnier par voie thermochimique pour le chauffage solaire de la maison individuelle , 2011 .

[35]  Y. Ying,et al.  Study on the thermal decomposition of tetrahydrated cerie sulphate , 1992 .

[36]  Nolwenn Le Pierrès,et al.  New deep-freezing process using renewable low-grade heat : From the conceptual design to experimental results , 2007 .

[37]  Luisa F. Cabeza,et al.  State of the art on gas–solid thermochemical energy storage systems and reactors for building applications , 2015 .

[38]  Yuri I. Aristov,et al.  Modification of magnesium and calcium hydroxides with salts: An efficient way to advanced materials for storage of middle-temperature heat , 2015 .

[39]  Pradyot Patnaik,et al.  Handbook of Inorganic Chemicals , 1997 .

[40]  M. Laügt,et al.  Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates , 1983 .

[41]  Ha Herbert Zondag,et al.  Prototype thermochemical heat storage with open reactor system , 2013 .

[42]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[43]  M. Lechner,et al.  Energiespeicherung durch chemische reaktionen. I. DSC-messungen zur quantitativen verfolgung der enthalpieänderungen von speicherstoffen für die hin- und rückreaktion , 1983 .

[44]  Dale L. Perry,et al.  Handbook of Inorganic Compounds. , 1995 .

[45]  Giovanni Restuccia,et al.  Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties , 1996 .

[46]  A. Małecki,et al.  Mechanism of Thermal Decomposition of d-metals Nitrates Hydrates , 2000 .

[47]  C. Pistorius Polymorphism and Incongruent Melting ofSrCl2· 6H2Oto 50 Kilobars , 1962 .

[48]  F. H. Getman Equilibrium in the system H2O‐MgBr2 , 2010 .

[49]  L. W. Wang,et al.  Sorption thermal storage for solar energy , 2013 .

[50]  Vincent Goetz,et al.  Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems , 2006 .

[51]  M. Basha,et al.  Structural and thermal degradation studies on thin films of the nanocomposite system PVP–Ce(SO4)2·4H2O , 2011, Polymer Bulletin.