Experimental and Theoretical Investigation of the Spin Hamiltonian Parameters for the Cr3+ Ion in a BeAl2O4:Cr3+ Crystal

The electron paramagnetic resonance of the Cr3+ ion in an alexandrite single crystal was explored. The angular dependence of the resonance fields observed using an X-band spectrometer in the crystallographic planes were analyzed using the monoclinic spin Hamiltonian. The spectroscopic splitting tensors gi and the 2nd order zero field splitting parameters |D| and |E| for the Cr3+ center at Al3+ site with mirror symmetry (Cs) in an alexandrite crystal were calculated using the crystal field theory for Cs symmetry. Then, the theoretical values were compared with the experimental values. The calculated spin Hamiltonian parameters explain nicely the experimental parameters for the Cr3+ center with mirror symmetry.

[1]  Baojiu Chen,et al.  An investigation of Mn4+ doped BeAl2O4 single crystal for WLEDs application , 2018, Ceramics International.

[2]  L. G. Jacobsohn,et al.  Fabrication and characterization of a composite dosimeter based on natural alexandrite , 2018, Optical Materials.

[3]  H. Kahn,et al.  Thermoluminescence of natural BeAl 2 O 4 :Cr 3+ Brazilian mineral: Preliminary studies , 2018 .

[4]  Xiaoxi Lin,et al.  A split‐face, single‐blinded, randomized controlled comparison of alexandrite 755‐nm picosecond laser versus alexandrite 755‐nm nanosecond laser in the treatment of acquired bilateral nevus of Ota–like macules , 2017, Journal of the American Academy of Dermatology.

[5]  P. Jaen,et al.  Alexandrite Laser for the Treatment of Resistant and Hypertrophic Port Wine Stains: A Clinical, Histological and Histochemical Study. , 2016, Actas dermo-sifiliograficas.

[6]  Y. Kim,et al.  Therapeutic efficacy of long‐pulsed 755‐nm alexandrite laser for seborrheic keratoses , 2014, Journal of the European Academy of Dermatology and Venereology : JEADV.

[7]  Arkady Major,et al.  High power continuous-wave Alexandrite laser with green pump , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[8]  K. Arndt,et al.  Treatment of tattoos with a picosecond alexandrite laser: a prospective trial. , 2012, Archives of dermatology.

[9]  S. A. Archugov,et al.  Crystal Growth and Characterization of Alexandrite , 2012 .

[10]  M. Li,et al.  Thermal annealing-induced electric dipole relaxation in natural alexandrite , 2005 .

[11]  T. Yeom,et al.  Temperature dependence of the nuclear magnetic resonance for 27Al(I) and 27Al(II) in a BeAl2O4: Cr crystal , 2004 .

[12]  H. Shin,et al.  Spin-lattice relaxations of 9Be and 27Al in single crystalline alexandrite , 1997 .

[13]  Zhao Min-guang,et al.  The local structure of Cr3+ centre in A2MF4 (A K, Rb, Cs; M Zn, Cd, Mg) crystals , 1990 .

[14]  C. Rudowicz,et al.  Effect of Monoclinic Symmetry on the EPR Spectra of Gd3+‐Doped Hydrated Single Crystals of Rare‐Earth Trichlorides , 1988 .

[15]  Du Mao-lu,et al.  Theoretical studies on the EPR of K3Co(CN)6: Cr3+ , 1988 .

[16]  T. Welberry,et al.  Calculation of elastic constants for crystalline acenaphthylene, C12H8, using semi-empirical atom-atom potentials , 1988 .

[17]  Zhao Min-guang,et al.  A mu-kappa-alpha correlation ligand-field model for the Ni2+-6X- cluster , 1987 .

[18]  Yeung,et al.  Superposition-model analyses for the Cr3+ 4A2 ground state. , 1986, Physical review. B, Condensed matter.

[19]  C. Rudowicz On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites , 1986 .

[20]  C. E. Forbes Analysis of the spin‐Hamiltonian parameters for Cr3+ in mirror and inversion symmetry sites of alexandrite (Al2−xCrxBeO4). Determination of the relative site occupancy by EPR , 1983 .

[21]  Zhao Min-guang,et al.  Erratum: d-orbital theory and high-pressure effects upon the EPR spectrum of ruby , 1983 .

[22]  D. Newman Superposition model analysis of spin Hamiltonian parameters , 1982 .

[23]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[24]  G. Troup,et al.  EPR of Cr3+ Ions in Alexandrite , 1969 .

[25]  P. Phakey Transmission Electron Microscope Study of Anti‐Phase Boundaries in Alexandrite (Al2−xCrxBeO4) , 1969 .

[26]  T. E. Gilmer,et al.  Quadrupole Splitting of the Magnetic Resonance Spectrum of 9Be in Chrysoberyl , 1965 .

[27]  J. Griffith,et al.  The Theory of Transition-Metal Ions , 1962 .

[28]  Dudley H. Williams,et al.  Nuclear Resonance Spectrum of Al27 in Chrysoberyl , 1958 .