Cosmic asymmetry, neutrinos and the sun☆

Abstract We consider the effects a cosmological asymmetry would have on various consequences of cold dark matter. To be specific, we suppose that stable Dirac neutrinos exist with masses of a few GeV. We then consider the contribution these neutrinos make towards a closure density for the universe and the possibility of capturing neutrinos in the sun and observing their annihilation products. We concentrate on the role asymmetry plays in altering previous discussions. The arguments concerning the sun are only relevant if the neutrino mass is greater than the “evaporation” mass, m ev . We evaluate m ev = 3.3 GeV using a detailed balance technique.

[1]  P. Hut Limits on masses and number of neutral weakly interacting particles , 1977 .

[2]  J. Hagelin,et al.  Supersymmetric relics from the big bang , 1984 .

[3]  Keith A. Olive,et al.  Limits on New Superweakly Interacting Particles from Primordial Nucleosynthesis , 1981 .

[4]  K. Olive,et al.  Primordial nucleosynthesis: a critical comparison of theory and observation , 1984 .

[5]  S. Lubow,et al.  Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos , 1982 .

[6]  L. Ibáñez The scalar neutrinos as the lightest supersymmetric particles and cosmology , 1984 .

[7]  P. Hut,et al.  A cosmological upper limit on the mass of heavy neutrinos , 1979 .

[8]  C. Pennypacker,et al.  A Measurement of the Cosmic-Ray Antiproton Flux and a Search for Antihelium , 1981 .

[9]  L. Aller,et al.  The chemical composition of the sun. , 1976, Science.

[10]  E. Kolb,et al.  On the relic abundance of stable neutrinos , 1985 .

[11]  J. Hagelin,et al.  Perhaps scalar neutrinos are the lightest supersymmetric partners , 1984 .

[12]  Makoto Kobayashi,et al.  Cosmological Constraints on the Mass and the Number of Heavy Lepton Neutrinos , 1977 .

[13]  E. Kolb,et al.  Cosmological upper bound on heavy-neutrino lifetimes , 1977 .

[14]  N. Cabibbo,et al.  Massive photinos: Unstable and interesting , 1981 .

[15]  J. Hagelin,et al.  Cosmic ray antimatter from supersymmetric dark matter , 1986 .

[16]  S. Weinberg,et al.  Cosmological lower bound on heavy-neutrino masses , 1977 .

[17]  Stephen Wolfram,et al.  Abundances of new stable particles produced in the early universe , 1979 .

[18]  W. Press,et al.  Capture by the sun of a galactic population of weakly interacting massive particles , 1985 .

[19]  Gary Steigman,et al.  COSMOLOGY CONFRONTS PARTICLE PHYSICS , 1979 .

[20]  J. Silk,et al.  High-energy neutrinos from the sun and cold dark matter , 1987 .

[21]  ARE THERE ANY COSMOLOGICAL CONSTRAINTS ON THE NUMBER OF NEUTRINOS , 1979 .

[22]  J. Silk,et al.  The photino, the sun, and high-energy neutrinos. , 1985, Physical review letters.

[23]  Cabrera,et al.  Bolometric detection of neutrinos. , 1985, Physical review letters.

[24]  J. Silk,et al.  Cosmic-ray antiprotons as a probe of a photino-dominated universe , 1984 .

[25]  R. Gilliland,et al.  Weakly interacting, massive particles and the solar neutrino flux , 1985 .

[26]  W. Press,et al.  Cold dark matter candidates and the solar neutrino problem , 1985 .

[27]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[28]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[29]  William A. Fowler,et al.  On the Synthesis of elements at very high temperatures , 1967 .

[30]  K. Freese Can Scalar Neutrinos Or Massive Dirac Neutrinos Be the Missing Mass , 1986 .

[31]  W. Press,et al.  Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior , 1985 .