Nonlinear vibrations in nuclei

We have perfomed Time Dependant Hartree-Fock (TDHF) calculations on the non linear response of nuclei. We have shown that quadrupole (and dipole) motion produces monopole (and quadrupole) oscillations in all atomic nuclei. We have shown that these findings can be interpreted as a large coupling between one and two phonon states leading to large anharmonicities.

[1]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[2]  M. Andrés,et al.  Anharmonicities and non-linearities in the excitation of double giant resonances , 1995 .

[3]  J. Wambach Damping of small-amplitude nuclear collective motion , 1988 .

[4]  Cheuk-Yin Wong,et al.  Extended time-dependent Hartree-Fock approximation with particle collisions , 1978 .

[5]  John W. Negele,et al.  The mean-field theory of nuclear structure and dynamics , 1982 .

[6]  M. Tohyama Collectivity of double giant resonances in extended RPA theories , 2001 .

[7]  S. Stringari,et al.  Lifetimes of monopole resonances in time-dependent Hartree-Fock theory , 1987 .

[8]  Takaharu Otsuka,et al.  Three-dimensional TDHF calculations for reactions of unstable nuclei , 1997 .

[9]  van Giai N,et al.  Two-plasmon excitations in metallic clusters. , 1993, Physical review. B, Condensed matter.

[10]  Role of anharmonicities and nonlinearities in heavy ion collisions A microscopic approach , 1996, nucl-th/9607052.

[11]  N. Giai,et al.  Electromagnetic decay of two-phonon states , 1992 .

[12]  W. Cassing,et al.  Explicit treatment of N-body correlations within a density-matrix formalism , 1985 .

[13]  P. Bortignon,et al.  MULTIPHONON GIANT RESONANCES IN NUCLEI , 1998 .

[14]  N. Frascaria,et al.  Multiple phonon excitation in nuclei: experimental results and theoretical descriptions , 1995 .

[15]  D. Brink,et al.  Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei , 1972 .

[16]  B. A. Brown,et al.  Microscopic calculation of double-dipole excitations , 2000 .

[17]  Exact stochastic mean-field approach to the fermionic many-body problem. , 2001, Physical review letters.

[18]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  P. Bonche,et al.  One-dimensional nuclear dynamics in the time-dependent Hartree-Fock approximation , 1976 .

[20]  Ponomarev,et al.  Anharmonic properties of the double giant dipole resonance , 2000, Physical review letters.

[21]  V. Ponomarev,et al.  FRAGMENTATION OF THE TWO-OCTUPOLE PHONON MULTIPLET IN 208PB , 1999 .

[22]  D. Lacroix,et al.  Finite temperature nuclear response in the extended random phase approximation , 1998, nucl-th/9810042.

[23]  P. Bortignon,et al.  Anharmonic effects in the excitation of double-giant dipole modes in relativistic heavy-ion collisions , 1997 .

[24]  H. Sagawa,et al.  Monopole and dipole compression modes in nuclei , 1981 .