Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology

[1]  Jose Manuel Valverde,et al.  Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2 , 2014 .

[2]  Jose Manuel Valverde,et al.  Role of crystal structure on CO2 capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions , 2014 .

[3]  Jia Guo,et al.  Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle , 2014 .

[4]  Juan Carlos Abanades,et al.  Undesired effects in the determination of CO2 carrying capacities of CaO during TG testing , 2014 .

[5]  Borja Arias,et al.  Design of a Novel Fluidized Bed Reactor To Enhance Sorbent Performance in CO2 Capture Systems Using CaO , 2014 .

[6]  J. Valverde,et al.  Effect of Heat Pretreatment/Recarbonation in the Ca-Looping Process at Realistic Calcination Conditions , 2014 .

[7]  Juan Carlos Abanades,et al.  Determination of CaO carbonation kinetics under recarbonation conditions , 2014 .

[8]  Jose Manuel Valverde,et al.  High and stable Co2 capture capacity of natural limestone at Ca-looping conditions by heat pretreatment and recarbonation synergy , 2014 .

[9]  J. Ritvanen,et al.  Model based scale-up study of the calcium looping process , 2014 .

[10]  Jaakko Ylätalo,et al.  Modeling of the oxy-combustion calciner in the post-combustion calcium looping process , 2013 .

[11]  A. Sánchez-Biezma,et al.  Demonstration of steady state CO2 capture in a 1.7 MWth Calcium looping pilot , 2013 .

[12]  Pilar Lisbona,et al.  Operation of a cyclonic preheater in the Ca-looping for CO2 capture. , 2013, Environmental science & technology.

[13]  Chin-Ming Huang,et al.  Design and Experimental Investigation of Calcium Looping Process for 3‐kWth and 1.9‐MWth Facilities , 2013 .

[14]  Fabio Montagnaro,et al.  Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 2. Assessment of dolomite vs. limestone , 2013 .

[15]  Jose Manuel Valverde,et al.  Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions , 2013 .

[16]  Jose Manuel Valverde,et al.  A model on the CaO multicyclic conversion in the Ca-looping process , 2013 .

[17]  C. Zheng,et al.  Effect of Support Material on Carbonation and Sulfation of Synthetic CaO-Based Sorbents in Calcium Looping Cycle , 2013 .

[18]  Roberta Pacciani,et al.  CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. , 2013, ChemSusChem.

[19]  J. Valverde,et al.  CO2 multicyclic capture of pretreated/doped CaO in the Ca-looping process. Theory and experiments. , 2013, Physical chemistry chemical physics : PCCP.

[20]  J. Carlos Abanades,et al.  The impact of calcium sulfate and inert solids accumulation in post-combustion calcium looping systems , 2013 .

[21]  J. Valverde,et al.  Role of Looping-Calcination Conditions on Self-Reactivation of Thermally Pretreated CO2 Sorbents Based on CaO , 2013 .

[22]  Loïc Favergeon,et al.  Atomic-scale study of calcite nucleation in calcium oxide , 2013 .

[23]  Gemma Grasa,et al.  Modelling the continuous calcination of CaCO3 in a Ca-looping system , 2013 .

[24]  Matteo C. Romano,et al.  Process simulation of Ca-looping processes: Review and guidelines , 2013 .

[25]  Liang-Shih Fan,et al.  Ionic diffusion through Calcite (CaCO3) layer during the reaction of CaO and CO2 , 2012 .

[26]  Alissa Cotton,et al.  Novel Optimized Process for Utilization of CaO-Based Sorbent for Capturing CO2 and SO2 Sequentially , 2012 .

[27]  N. Cai,et al.  Rate Equation Theory for the Carbonation Reaction of CaO with CO2 , 2012 .

[28]  Borja Arias,et al.  Post-combustion calcium looping process with a highly stable sorbent activity by recarbonation , 2012 .

[29]  Vasilije Manovic,et al.  Pilot-Scale Study of CO2 Capture by CaO-Based Sorbents in the Presence of Steam and SO2 , 2012 .

[30]  Ningsheng Cai,et al.  Effect of Temperature on the Carbonation Reaction of CaO with CO2 , 2012 .

[31]  M. Romano Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas , 2012 .

[32]  Jinyue Yan,et al.  Characterization of flue gas in oxy-coal combustion processes for CO2 capture , 2012 .

[33]  Borja Arias,et al.  Experimental Validation of the Calcium Looping CO2 Capture Process with Two Circulating Fluidized Bed Carbonator Reactors , 2011 .

[34]  A. Sánchez-Biezma,et al.  Postcombustion CO2 capture with CaO. Status of the technology and next steps towards large scale demonstration , 2011 .

[35]  Paul S. Fennell,et al.  The calcium looping cycle for large-scale CO2 capture , 2010 .

[36]  E. J. Anthony,et al.  A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes , 2010 .

[37]  Vasilije Manovic,et al.  Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles , 2009 .

[38]  Luis M. Romeo,et al.  Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants , 2009 .

[39]  Robin W. Hughes,et al.  Sintering and Reactivity of CaCO3-Based Sorbents for In Situ CO2 Capture in Fluidized Beds under Realistic Calcination Conditions , 2009 .

[40]  Mónica Alonso,et al.  Application of the random pore model to the carbonation cyclic reaction , 2009 .

[41]  L. Romeo,et al.  Optimizing make-up flow in a CO2 capture system using CaO , 2009 .

[42]  Vasilije Manovic,et al.  Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. , 2008, Environmental science & technology.

[43]  J. C. Abanades,et al.  Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO , 2008 .

[44]  Mónica Alonso,et al.  Sulfation of CaO Particles in a Carbonation/Calcination Loop to Capture CO2 , 2008 .

[45]  R. Barker,et al.  The reversibility of the reaction CaCO3 ⇄ CaO+CO2 , 2007 .

[46]  Changsui Zhao,et al.  Calcination and sintering characteristics of limestone under O2/CO2 combustion atmosphere , 2007 .

[47]  J. Carlos Abanades,et al.  CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles , 2006 .

[48]  B. R. Stanmore,et al.  Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration , 2005 .

[49]  Juan Adánez,et al.  Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations , 2002 .

[50]  Robert H. Borgwardt,et al.  Calcium oxide sintering in atmospheres containing water and carbon dioxide , 1989 .

[51]  D. D. Perlmutter,et al.  Effect of the product layer on the kinetics of the CO2‐lime reaction , 1983 .

[52]  D. L. Keairns,et al.  A thermogravimetric study of the sulfation of limestone and dolomite—the effect of calcination conditions , 1976 .