Quantum interpolation for high-resolution sensing

Significance Nanoscale magnetic resonance imaging enabled by quantum sensors is a promising path toward the outstanding goal of determining the structure of single biomolecules at room temperature. We develop a technique, which we name “quantum interpolation,” to improve the frequency resolution of these quantum sensors far beyond limitations set by the experimental controlling apparatus. The method relies on quantum interference to achieve high-fidelity interpolation of the quantum dynamics between hardware-allowed time samplings, thus allowing high-resolution sensing. We demonstrate over two orders of magnitude resolution gains, and discuss applications of our work to high-resolution nanoscale magnetic resonance imaging. Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

[1]  Paola Cappellaro,et al.  Quantum simulation via filtered Hamiltonian engineering: application to perfect quantum transport in spin networks. , 2012, Physical review letters.

[2]  J. Meijer,et al.  Probing molecular dynamics at the nanoscale via an individual paramagnetic centre , 2015, Nature Communications.

[3]  Paola Cappellaro,et al.  Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond , 2014, 1407.3134.

[4]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[5]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[6]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[7]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[8]  P Cappellaro,et al.  Dressed-state resonant coupling between bright and dark spins in diamond. , 2013, Physical review letters.

[9]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[10]  Anna Keselman,et al.  Single-ion quantum lock-in amplifier , 2011, Nature.

[11]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[12]  D. Lidar,et al.  Performance of Deterministic Dynamical Decoupling Schemes: Concatenated and Periodic Pulse Sequences , 2006, quant-ph/0607086.

[13]  S. Bennett,et al.  All-optical sensing of a single-molecule electron spin. , 2013, Nano letters.

[14]  P. Hemmer Toward Molecular-Scale MRI , 2013, Science.

[15]  S. Bennett,et al.  Sensing distant nuclear spins with a single electron spin. , 2012, Physical review letters.

[16]  P. Cappellaro,et al.  Measurement of transverse hyperfine interaction by forbidden transitions , 2015, 1503.08858.

[17]  M. Plenio,et al.  Robust dynamical decoupling sequences for individual-nuclear-spin addressing , 2015, 1506.03766.

[18]  M. Markham,et al.  Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.

[19]  Andrew Fruchter,et al.  Novel image-reconstruction method applied to deep Hubble space telescope images , 1997, Optics & Photonics.

[20]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[21]  A. Laraoui,et al.  Approach to dark spin cooling in a diamond nanocrystal. , 2013, ACS nano.

[22]  G. Kurizki,et al.  Shift-driven modulations of spin-echo signals , 2012, Proceedings of the National Academy of Sciences.

[23]  T. Taminiau,et al.  Detection and control of individual nuclear spins using a weakly coupled electron spin. , 2012, Physical review letters.

[24]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[25]  Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. , 2014, Nature nanotechnology.

[26]  Anil Kumar,et al.  Algorithmic approach to simulate Hamiltonian dynamics and an NMR simulation of quantum state transfer , 2009, 0911.5467.

[27]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[28]  M. Lukin,et al.  NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond , 2015, 1508.04191.

[29]  P. Cappellaro,et al.  Perfect quantum transport in arbitrary spin networks , 2012, 1207.5580.

[30]  Lorenza Viola,et al.  General transfer-function approach to noise filtering in open-loop quantum control. , 2014, Physical review letters.

[31]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[32]  M. Plenio,et al.  Diamond-based single-molecule magnetic resonance spectroscopy , 2011, 1112.5502.

[33]  C. Degen,et al.  Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor , 2013, 1312.2394.

[34]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[35]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[36]  Hongbin Sun,et al.  Single-protein spin resonance spectroscopy under ambient conditions , 2015, Science.

[37]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[38]  Dieter Suter,et al.  Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.

[39]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[40]  S Das Sarma,et al.  Electron spin dephasing due to hyperfine interactions with a nuclear spin bath. , 2009, Physical review letters.

[41]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[42]  M. Plenio,et al.  Detecting and polarizing nuclear spins with double resonance on a single electron spin. , 2013, Physical review letters.

[43]  Jiangfeng Du,et al.  Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy , 2015, 1506.05882.

[44]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[45]  A. Yacoby,et al.  Nanometre-scale probing of spin waves using single-electron spins , 2014, Nature Communications.

[46]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[47]  Dieter Suter,et al.  Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin-bath , 2010, 1008.1962.

[48]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[49]  D. Rugar,et al.  Spurious harmonic response of multipulse quantum sensing sequences , 2014, 1412.5768.

[50]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[51]  D. Suter,et al.  Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath , 2010, 1011.6243.

[52]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[53]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[54]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[55]  L. Childress,et al.  Supporting Online Material for , 2006 .

[56]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[57]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[58]  Yasunobu Nakamura,et al.  Spectroscopy of low-frequency noise and its temperature dependence in a superconducting qubit , 2012, 1201.5665.