Amplitude equations for reaction-diffusion systems with a Hopf bifurcation and slow real modes

Abstract Using a normal form approach described in a previous paper we derive an amplitude equation for a reaction–diffusion system with a Hopf bifurcation coupled to one or more slow real eigenmodes. The new equation is useful even for systems where the actual bifurcation underlying the description cannot be realized, which is typical of chemical systems. For a fold-Hopf bifurcation, the equation successfully handles actual chemical reactions where the complex Ginzburg–Landau equation fails. For a realistic chemical model of the Belousov–Zhabotinsky reaction, we compare solutions to the reaction–diffusion equation with the approximations by the complex Ginzburg–Landau equation and the new distributed fold-Hopf equation.

[1]  Weber,et al.  Stability limits of spirals and traveling waves in nonequilibrium media. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  Huber,et al.  Nucleation and transients at the onset of vortex turbulence. , 1992, Physical review letters.

[3]  R. Schwarzenbach,et al.  Environmental Organic Chemistry , 1993 .

[4]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[5]  I. Schreiber,et al.  Dynamical properties of chemical systems near Hopf bifurcation points. , 2000, Chaos.

[6]  M. Ipsen,et al.  Systematic derivation of amplitude equations and normal forms for dynamical systems. , 1998, Chaos.

[7]  Q. Ouyang,et al.  Experimental Survey of Spiral Dynamics in the Belousov-Zhabotinsky Reaction , 1997 .

[8]  Stephen Wolfram,et al.  The Mathematica book (3rd ed.) , 1996 .

[9]  Keith O. Geddes,et al.  Maple V Programming Guide , 1996 .

[10]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[11]  Angelo Vulpiani,et al.  Dynamical Systems Approach to Turbulence , 1998 .

[12]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[13]  F. Hynne,et al.  Transient Complex Oscillations in the Closed Belousov-Zhabotinsky Reaction: Experimental and Computational Studies , 1995 .

[14]  Q. Ouyang,et al.  Transition from spirals to defect turbulence driven by a convective instability , 1996, Nature.

[15]  Hynne,et al.  Experimental determination of Ginzburg-Landau parameters for reaction-diffusion systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  P. G. Sørensen,et al.  Amplitude Equations and Chemical Reaction–Diffusion Systems , 1997 .

[17]  rensen,et al.  Complete optimization of models of the Belousov–Zhabotinsky reaction at a Hopf bifurcation , 1993 .

[18]  A. Zhabotinsky A history of chemical oscillations and waves. , 1991, Chaos.

[19]  Levine,et al.  Spiral competition in three-component excitable media. , 1996, Physical review letters.

[20]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[21]  R. J. Field,et al.  On the oxybromine chemistry rate constants with cerium ions in the Field-Koeroes-Noyes mechanism of the Belousov-Zhabotinskii reaction: the equilibrium HBrO2 + BrO3- + H+ .dblharw. 2BrO.ovrhdot.2 + H2O , 1986 .

[22]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[23]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[24]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[25]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.