Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.

Wavelength-selective metamaterial absorbers in the mid-infrared range are demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical parameters of cross resonators in single-sized unit cells, near-perfect absorption with single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of two, three, or four cross resonators of different sizes in one unit cell enables broadband near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit omnidirectionality and weak dependence on incident polarization. The underlying mechanism of near-perfect absorption with cross resonators is further explained by the optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, thermal analysis is performed to study the heat generation and temperature increase in the cross resonator absorbers, while the energy conversion efficiency is calculated for the thermophotovoltaic system made of the cross resonator thermal emitters and low-bandgap semiconductors.

[1]  Xiaodong Yang,et al.  Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces. , 2016, Nano letters.

[2]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[3]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[4]  Seokho Yun,et al.  Near-ideal optical metamaterial absorbers with super-octave bandwidth. , 2014, ACS nano.

[5]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[6]  D. Czaplewski,et al.  All-metal structural color printing based on aluminum plasmonic metasurfaces. , 2016, Optics express.

[7]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[8]  Yanxia Cui,et al.  A thin film broadband absorber based on multi-sized nanoantennas , 2011 .

[9]  Haifeng Hu,et al.  Broadband absorption engineering of hyperbolic metafilm patterns , 2014, Scientific Reports.

[10]  A. Zunger,et al.  Electronic and structural anomalies in lead chalcogenides , 1997 .

[11]  Xiaodong Yang,et al.  Broadband perfect absorber based on one ultrathin layer of refractory metal. , 2015, Optics letters.

[12]  Bong Jae Lee,et al.  Broadband Solar Thermal Absorber Based on Optical Metamaterials for High‐Temperature Applications , 2016 .

[13]  Zhuomin M. Zhang,et al.  Phonon-mediated magnetic polaritons
in the infrared region. , 2011, Optics express.

[14]  Xiaodong Yang,et al.  Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials , 2015, 1506.00064.

[15]  Long Wen,et al.  Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application , 2015 .

[16]  Zhuomin M. Zhang,et al.  Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model , 2014 .

[17]  Gennady Shvets,et al.  Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems , 2011 .

[18]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[19]  Susumu Noda,et al.  Realization of narrowband thermal emission with optical nanostructures , 2015 .

[20]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[21]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[22]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[23]  M. Kafesaki,et al.  Optical metamaterials with different metals , 2012, 1209.5777.

[24]  D. Cahill,et al.  Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.

[25]  C. Sauvan,et al.  Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating. , 2010, Optics express.

[26]  Shanhui Fan,et al.  Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. , 2009, Optics express.

[27]  M. Stordeur,et al.  Thermal conductivity of thin amorphous alumina films , 1993 .

[28]  M. Mauk,et al.  GaSb-related materials for TPV cells , 2003 .

[29]  Yia-Chung Chang,et al.  Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. , 2012, Optics express.

[30]  A. Alivisatos,et al.  SnTe nanocrystals: a new example of narrow-gap semiconductor quantum dots. , 2007, Journal of the American Chemical Society.

[31]  D. Czaplewski,et al.  Realizing structural color generation with aluminum plasmonic V-groove metasurfaces. , 2017, Optics express.

[32]  Min Qiu,et al.  Nanosecond photothermal effects in plasmonic nanostructures. , 2012, ACS nano.

[33]  Sailing He,et al.  Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films , 2014 .

[34]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[35]  E. L. Cook,et al.  Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators , 1973 .

[36]  Kazuaki Sakoda,et al.  Dual-band infrared metasurface thermal emitter for CO2 sensing , 2014 .

[37]  J. Leuthold,et al.  On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing , 2017 .

[38]  Abul K. Azad,et al.  Metasurface Broadband Solar Absorber , 2015, Scientific Reports.

[39]  Z. Jacob,et al.  Thermal hyperbolic metamaterials , 2013 .

[40]  Yiping Zeng,et al.  Progress in Antimonide Based III-V Compound Semiconductors and Devices , 2010 .

[41]  A. Marshall,et al.  Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion , 2016, Journal of Electronic Materials.

[42]  D. Czaplewski,et al.  Broadband Infrared Absorbers with Stacked Double Chromium Ring Resonators , 2017 .

[43]  Hao Wang,et al.  Perfect selective metamaterial solar absorbers. , 2013, Optics express.

[44]  Yu-Bin Chen,et al.  Interaction Between the Magnetic Polariton and Surface Plasmon Polariton , 2013 .

[45]  A. Krier,et al.  Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes , 2011 .

[46]  Yong Shuai,et al.  Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure , 2013 .

[47]  Z. Jacob,et al.  High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. , 2012, Optics express.

[48]  J. Cederberg,et al.  Heterogeneous metasurface for high temperature selective emission , 2014 .

[49]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[50]  Michele Pinelli,et al.  Overview and Status of Thermophotovoltaic Systems , 2014 .

[51]  Y. X. Yeng,et al.  Enabling high-temperature nanophotonics for energy applications , 2012, Proceedings of the National Academy of Sciences.

[52]  F. Costa,et al.  A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers , 2013, IEEE Transactions on Antennas and Propagation.

[53]  Makoto Okada,et al.  Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities , 2008 .

[54]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[55]  N. Semmar,et al.  Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry , 2006 .

[56]  H. Benisty,et al.  Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission , 2015 .

[57]  Jean-Jacques Greffet,et al.  Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law , 1998 .

[58]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.