Segmentation and study of anatomical variability of the cochlea from medical images

Cochlear implants (CI) are used to treat hearing loss by surgically inserting an electrode array into the organ of hearing, the cochlea. Pre- and post-operative CT images are used routinely for surgery planning and evaluation of cochlear implantation. However, due to the small size and the complex topology of the cochlea, the anatomical information that can be extracted from the images is limited. The first focus of this work aims at defining automatic image processing methods adapted to the spiral shape of the cochlea to study the cochlear shape variability from high-resolution μCT images. The second focus aims at developing and evaluating a new parametric cochlear shape model. The model is applied to extract patient-specific clinically relevant metrics such as the maximal insertion depth of CI electrode arrays. Thanks to the uncertainty quantification, provided by the model, we can assess the reliability of CT-based segmentation as compared to the ground truth segmentation provided by μCT scans. Finally, the last focus concerns a joint model of the cochlear shape (and its substructures) model and its appearance within a generative probabilistic Bayesian framework. The proposed segmentation method was applied to a large database of 987 CT images and allowed the statistical characterization of the cochlear anatomical variability along with the quantification of the bilateral symmetry. This work paves the way to novel clinical applications such as improved diagnosis by identifying pathological cochlear shapes; preoperative optimal electrode design and insertion axis planning; postoperative electrode position estimation and implantation evaluation; and cochlear implantation simulation.

[1]  M. Zrunek,et al.  Dimensions of the scala vestibuli and sectional areas of both scales , 1981, Archives of oto-rhino-laryngology.

[2]  Koenraad Van Leemput,et al.  Joint Segmentation of Image Ensembles via Latent Atlases , 2009, MICCAI.

[3]  F Vanpoucke,et al.  High resolution micro-CT scanning as an innovatory tool for evaluation of the surgical positioning of cochlear implant electrodes , 2006, Acta oto-laryngologica.

[4]  Benoit M. Dawant,et al.  Automatic segmentation of intra-cochlear anatomy in post-implantation CT , 2013, Medical Imaging.

[5]  Hans-Peter Meinzer,et al.  A Shape-Guided Deformable Model with Evolutionary Algorithm Initialization for 3D Soft Tissue Segmentation , 2007, IPMI.

[6]  Johan H M Frijns,et al.  Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients. , 2005, AJNR. American journal of neuroradiology.

[7]  Rasmus Larsen,et al.  Statistical Shape Analysis of the Human Ear Canal with Application to In-the-Ear Hearing Aid Design , 2004 .

[8]  Mary Hardy,et al.  The length of the organ of Corti in man , 1938 .

[9]  Omid Majdani,et al.  Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear , 2013, International Journal of Computer Assisted Radiology and Surgery.

[10]  Simon J. D. Prince,et al.  Computer Vision: Models, Learning, and Inference , 2012 .

[11]  Thomas Klenzner,et al.  Quality Control After Insertion of the Nucleus Contour and Contour Advance Electrode in Adults , 2007, Ear and hearing.

[12]  H Delingette,et al.  Optimal electrode diameter in relation to volume of the cochlea. , 2016, European annals of otorhinolaryngology, head and neck diseases.

[13]  Tien-Tsin Wong,et al.  Automatic MRI segmentation and morphoanatomy analysis of the vestibular system in adolescent idiopathic scoliosis , 2011, NeuroImage.

[14]  PerrI'A.,et al.  Improved and Simplified Methods for Specifying Positions of the Electrode Bands of a Cochlear Implant Array Audiology , 2009 .

[15]  Yann Nguyen,et al.  Cochlear Implant Insertion Forces in Microdissected Human Cochlea to Evaluate a Prototype Array , 2012, Audiology and Neurotology.

[16]  Michael B. Gluth,et al.  Rotation of the osseous spiral lamina from the hook region along the basal turn of the cochlea: results of a magnetic resonance image anatomical study using high-resolution DRIVE sequences , 2011, Surgical and Radiologic Anatomy.

[17]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[18]  Martin Westhofen,et al.  The Internal Dimensions of the Cochlear Scalae With Special Reference to Cochlear Electrode Insertion Trauma , 2010, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[19]  A. Aarnisalo,et al.  Cone-beam computed tomography: A new method for imaging of the temporal bone , 2009, Acta radiologica.

[20]  Stephen M. Smith,et al.  A Bayesian model of shape and appearance for subcortical brain segmentation , 2011, NeuroImage.

[21]  Graeme M. Clark,et al.  Computer-Aided Three-Dimensional Reconstruction in Human Cochlear Maps: Measurement of the Lengths of Organ of Corti, Outer Wall, Inner Wall, and Rosenthal's Canal , 1996, The Annals of otology, rhinology, and laryngology.

[22]  Bernard Fraysse,et al.  The Size of the Cochlea and Predictions of Insertion Depth Angles for Cochlear Implant Electrodes , 2006, Audiology and Neurotology.

[23]  Gavin R. Baker Tracking, modelling and registration of anatomical objects: the human cochlea , 2008 .

[24]  Omid Majdani,et al.  Modeling and segmentation of intra-cochlear anatomy in conventional CT , 2010, Medical Imaging.

[25]  Willem F. Bronsvoort,et al.  Self-intersection avoidance and integral properties of generalized cylinders , 2002, Comput. Aided Geom. Des..

[26]  Frank Böhnke,et al.  Three-dimensional representation of the human cochlea using micro-computed tomography data: Presenting an anatomical model for further numerical calculations , 2012, Acta oto-laryngologica.

[27]  W. Eric L. Grimson,et al.  A Unifying Approach to Registration, Segmentation, and Intensity Correction , 2005, MICCAI.

[28]  D. Rubin,et al.  ML ESTIMATION OF THE t DISTRIBUTION USING EM AND ITS EXTENSIONS, ECM AND ECME , 1999 .

[29]  Ge Wang,et al.  Three-dimensional geometric modeling of the cochlea using helico-spiral approximation , 2000, IEEE Trans. Biomed. Eng..

[30]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[31]  Johan H. M. Frijns,et al.  Consensus Panel on a Cochlear Coordinate System Applicable in Histologic, Physiologic, and Radiologic Studies of the Human Cochlea , 2010, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[32]  Daoqiang Zhang,et al.  A generative probability model of joint label fusion for multi-atlas based brain segmentation , 2014, Medical Image Anal..

[33]  Michael Tykocinski,et al.  Cochleostomy site: Implications for electrode placement and hearing preservation , 2005, Acta oto-laryngologica.

[34]  C. Muren,et al.  Anatomic Variations of the Cochlea and Relations to other Temporal Bone Structures , 1990, Acta radiologica.

[35]  Maureen Clerc,et al.  In situ validation of a parametric model of electrical field distribution in an implanted cochlea , 2015, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER).

[36]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[37]  Ramakant Nevatia,et al.  Three-Dimensional Descriptions Based on the Analysis of the Invariant and Quasi-Invariant Properties of Some Curved-Axis Generalized Cylinders , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[39]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[40]  Hans Martin Kjer,et al.  Image Registration of Cochlear \mu μ CT Data Using Heat Distribution Similarity , 2015, SCIA.

[41]  Margaret W. Skinner,et al.  CT-Derived Estimation of Cochlear Morphology and Electrode Array Position in Relation to Word Recognition in Nucleus-22 Recipients , 2002, Journal of the Association for Research in Otolaryngology.

[42]  Richard S. Chadwick,et al.  Effects of Geometry on Fluid Loading in a Coiled Cochlea , 2000, SIAM J. Appl. Math..

[43]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[44]  A. Eshraghi,et al.  Comparative Study of Cochlear Damage With Three Perimodiolar Electrode Designs , 2003, The Laryngoscope.

[45]  Richard A Robb,et al.  Imaging microscopy of the middle and inner ear: Part I: CT microscopy , 2004, Clinical anatomy.

[46]  Benoit M Dawant,et al.  Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans. , 2011, Medical physics.

[47]  M. Zrunek,et al.  Dimensions of the scala tympani in relation to the diameters of multichannel electrodes , 2007, Archives of oto-rhino-laryngology.

[48]  Wu-Chul Song,et al.  Quantitative Analysis of the Cochlea using Three‐Dimensional Reconstruction based on Microcomputed Tomographic Images , 2013, Anatomical record.

[49]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Paul Caruso,et al.  A Histological Study of Scala Communis with Radiological Implications , 2010, Audiology and Neurotology.

[52]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[53]  Benoit M. Dawant,et al.  Automatic pre- to intra-operative CT registration for image-guided cochlear implant surgery , 2012, Medical Imaging.

[54]  Thomas Lenarz,et al.  Variations in microanatomy of the human cochlea , 2014, The Journal of comparative neurology.

[55]  Stephen J. Rebscher,et al.  A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: Comparison of Nucleus banded and Nucleus Contour ™ electrodes , 2005, Hearing Research.

[56]  Liang Changhong,et al.  3D Semi-automatic Segmentation of the Cochlea and Inner Ear , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[57]  Xenia Meshik,et al.  Optimal Cochlear Implant Insertion Vectors , 2010, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[58]  Luca Ferrarini,et al.  Anatomic Considerations of Cochlear Morphology and Its Implications for Insertion Trauma in Cochlear Implant Surgery , 2009, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[59]  Thomas Zahnert,et al.  The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data , 2008, Hearing Research.

[60]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer Assisted Intervention , 2017 .

[61]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[62]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[63]  Benoit M. Dawant,et al.  Image-Guidance Enables New Methods for Customizing Cochlear Implant Stimulation Strategies , 2013, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[64]  Ilmari Pyykkö,et al.  Imaging cochlear implantation with round window insertion in human temporal bones and cochlear morphological variation using high-resolution cone beam CT , 2015, Acta oto-laryngologica.

[65]  Ron Kikinis,et al.  Registration and Fusion of CT and MRI of the Temporal Bone , 2005, Journal of computer assisted tomography.

[66]  E. Neri,et al.  3-D CT and MRI co-registration in the assessment of cochlear implantation. , 2005, Medical science monitor : international medical journal of experimental and clinical research.

[67]  Nick Barnes,et al.  Model-Image Registration of Parametric Shape Models: Fitting a Shell to the Cochlea , 2005, The Insight Journal.

[68]  Ge Wang,et al.  Three-dimensional modeling and visualization of the cochlea on the Internet , 2000, IEEE Transactions on Information Technology in Biomedicine.

[69]  Rasmus R. Paulsen,et al.  Patient-Specific Simulation of Implant Placement and Function for Cochlear Implantation Surgery Planning , 2014, MICCAI.

[70]  Ge Wang,et al.  Semiautomatic Segmentation of the Cochlea Using Real-Time Volume Rendering and Regional Adaptive Snake Modeling , 2001, Journal of Digital Imaging.

[71]  Patric Jacobs,et al.  Realistic 3D Computer Model of the Gerbil Middle Ear, Featuring Accurate Morphology of Bone and Soft Tissue Structures , 2011, Journal of the Association for Research in Otolaryngology.

[72]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[73]  Thomas Zahnert,et al.  A segmentation method to obtain a complete geometry model of the hearing organ , 2011, Hearing Research.

[74]  Hans Martin Kjer,et al.  Cochlea segmentation using iterated random walks with shape prior , 2016, SPIE Medical Imaging.

[75]  Peter S Roland,et al.  Temporal bone microdissection for anatomic study of cochlear implant electrodes , 2005, Cochlear implants international.

[76]  J. Fayad,et al.  Human Cochleae With Three Turns: An Unreported Malformation , 2006, The Laryngoscope.

[77]  Nick Barnes,et al.  Principal flow for tubular objects with non-circular cross-sections , 2004, ICPR 2004.

[78]  Benoit M. Dawant,et al.  Statistical Shape Model Segmentation and Frequency Mapping of Cochlear Implant Stimulation Targets in CT , 2012, MICCAI.

[79]  Marco Caversaccio,et al.  Instrument flight to the inner ear , 2017, Science Robotics.

[80]  Sébastien Ourselin,et al.  Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images , 2000, MICCAI.

[81]  Koenraad Van Leemput,et al.  Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling , 2016, NeuroImage.

[82]  Hans Martin Kjer,et al.  Random walks with shape prior for cochlea segmentation in ex vivo $$\mu \hbox {CT}$$μCT , 2016, International Journal of Computer Assisted Radiology and Surgery.

[83]  Jian Zhang,et al.  A Pilot Study of Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays , 2006, MICCAI.

[84]  I. Saatci,et al.  A New Classification for Cochleovestibular Malformations , 2002, The Laryngoscope.

[85]  Przemyslaw Prusinkiewicz,et al.  Modeling seashells , 1992, SIGGRAPH.

[86]  Hans Martin Kjer,et al.  Free-form image registration of human cochlear μCT data using skeleton similarity as anatomical prior , 2016, Pattern Recognit. Lett..

[87]  R. Snyder,et al.  Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness , 1999, The Journal of comparative neurology.

[88]  S. M. Eslami,et al.  Generative probabilistic models for object segmentation , 2014 .

[89]  D'arcy W. Thompson On Growth and Form, 1917 , 2019 .

[90]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[91]  Nassir Navab,et al.  Segmentation by retrieval with guided random walks: Application to left ventricle segmentation in MRI , 2013, Medical Image Anal..

[92]  Benoit M. Dawant,et al.  An artifact-robust, shape library-based algorithm for automatic segmentation of inner ear anatomy in post-cochlear-implantation CT , 2014, Medical Imaging.

[93]  Hervé Delingette,et al.  Teaching tool for advanced visualization of temporal bone structures by fusion of μCT and CT scan images , 2014 .

[94]  J. Fayad,et al.  Multichannel Cochlear Implants: Relation of Histopathology to Performance , 2006, The Laryngoscope.

[95]  Anneliese Schrott-Fischer,et al.  Anatomy of the human cochlea – implications for cochlear implantation , 2011, Cochlear implants international.

[96]  Hans Martin Kjer,et al.  Modelling of the Human Inner Ear Anatomy and Variability for Cochlear Implant Applications , 2016 .

[97]  W. House,et al.  Congenital malformations of the inner ear: A classification based on embryogenesis , 1987, The Laryngoscope.

[98]  Hans Martin Kjer,et al.  Predicting Detailed Inner Ear Anatomy from Pre-Oppreoperational CT for cochlear implant surgery , 2015 .

[99]  Jake J. Abbott,et al.  A Scalable Model for Human Scala-Tympani Phantoms , 2011 .

[100]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[101]  Yann Nguyen,et al.  Friction Force Measurement During Cochlear Implant Insertion: Application to a Force-Controlled Insertion Tool Design , 2012, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[102]  G M Clark,et al.  Cochlear view: postoperative radiography for cochlear implantation. , 2000, The American journal of otology.

[103]  Yann Nguyen,et al.  Variability of the mental representation of the cochlear anatomy during cochlear implantation , 2015, European Archives of Oto-Rhino-Laryngology.

[104]  Michael J. Todd,et al.  A Mathematical Model of Human Semicircular Canal Geometry: A New Basis for Interpreting Vestibular Physiology , 2010, Journal of the Association for Research in Otolaryngology.

[105]  M W Skinner,et al.  Cochlear implants: three-dimensional localization by means of coregistration of CT and conventional radiographs. , 2001, Radiology.

[106]  Omid Majdani,et al.  Automatic Segmentation of Intracochlear Anatomy in Conventional CT , 2011, IEEE Transactions on Biomedical Engineering.

[107]  Richard A Robb,et al.  Imaging microscopy of the middle and inner ear: Part II: MR microscopy , 2005, Clinical anatomy.

[108]  Isabelle Bloch,et al.  A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes , 2009, Medical Image Anal..

[109]  Patricia A. Leake,et al.  Frequency Map for the Human Cochlear Spiral Ganglion: Implications for Cochlear Implants , 2007, Journal for the Association for Research in Otolaryngology.

[110]  Helge Rask-Andersen,et al.  Variational Anatomy of the Human Cochlea: Implications for Cochlear Implantation , 2009, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[111]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[112]  Andrew Blake,et al.  GeoS: Geodesic Image Segmentation , 2008, ECCV.

[113]  Christos Davatzikos,et al.  Deformable Registration of Glioma Images Using EM Algorithm and Diffusion Reaction Modeling , 2011, IEEE Transactions on Medical Imaging.

[114]  Marc Stamminger,et al.  Wizard-Based Segmentation for Cochlear Implant Planning , 2014, Bildverarbeitung für die Medizin.

[115]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[116]  Hervé Delingette,et al.  Automated analysis of human cochlea shape variability from segmented μCT images , 2017, Comput. Medical Imaging Graph..

[117]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[118]  Hervé Delingette,et al.  Uncertainty Quantification of Cochlear Implant Insertion from CT Images , 2016, CLIP@MICCAI.

[119]  Jérémie Dequidt,et al.  Numerical Simulation of Cochlear-Implant Surgery: Towards Patient-Specific Planning , 2016, MICCAI.

[120]  J. Alison Noble,et al.  MAP MRF joint segmentation and registration of medical images , 2003, Medical Image Anal..

[121]  J. Laidlaw,et al.  ANATOMY OF THE HUMAN BODY , 1967, The Ulster Medical Journal.

[122]  Blake S. Wilson,et al.  Cochlear implants: A remarkable past and a brilliant future , 2008, Hearing Research.

[123]  Michael M Paparella,et al.  Multi-channel cochlear implant histopathology: Are fewer spiral ganglion cells really related to better clinical performance? , 2012, Acta oto-laryngologica.

[124]  Laurent D. Cohen,et al.  Fast extraction of minimal paths in 3D images and applications to virtual endoscopy , 2001, Medical Image Anal..

[125]  Jan Kiefer,et al.  Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: A histologically controlled insertion study , 2004, Acta oto-laryngologica.

[126]  Jeroen J Briaire,et al.  Diversity in Cochlear Morphology and Its Influence on Cochlear Implant Electrode Position , 2014, Ear and hearing.

[127]  Hans Martin Kjer,et al.  Multi-region statistical shape model for cochlear implantation , 2016, SPIE Medical Imaging.

[128]  N. Ayache,et al.  Impact of the surgical experience on cochleostomy location: a comparative temporal bone study between endaural and posterior tympanotomy approaches for cochlear implantation , 2016, European Archives of Oto-Rhino-Laryngology.

[129]  Nicolas Toussaint,et al.  MedINRIA: Medical Image Navigation and Research Tool by INRIA , 2007 .