High-resolution non-gradient topology optimization

Abstract Non-gradient topology optimization aims to utilize soft computing approaches to approxi-mate the optimal material distribution inside a predefined design domain of a structure. Although these approaches have the advantage of solving problems without a need for calculating gradients or sensitivities, they are associated with the drawback of coarse meshing or a limitation over the design domain. In this paper, we demonstrate how the derivative-free level-set method can eliminate this drawback without scarifying the quality of obtained topologies. We solved three benchmark numerical experiments at different levels of fine meshing. Additionally, the topological attainability is explored using image processing and models of physical problems of structural compliance, heat transfer and composite structures. The obtained results were compared to those by gradient methods. The results indicate that the proposed derivative-free level-set method can make the number of decision variables independent of the meshing level, but the level of attainable topological features. They demonstrate that the proposed approach can attain complex topological details using small numbers of decision variables at relatively low computational costs.

[1]  Vivien J. Challis,et al.  A discrete level-set topology optimization code written in Matlab , 2010 .

[2]  Alexandra A. Gomes,et al.  Improving the Performance of the Spectral Level Methodology , 2008 .

[3]  Sujin Bureerat,et al.  Structural topology optimisation using simulated annealing with multiresolution design variables , 2008 .

[4]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[5]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[6]  David Guirguis Comments on "Evolutionary and GPU computing for topology optimization of structures" , 2017, Swarm Evol. Comput..

[7]  E Sandgren,et al.  TOPOLOGICAL DESIGN OF STRUCTURAL COMPONENTS USING GENETIC OPTIMIZATION METHOD , 1990 .

[8]  Anupam Saxena,et al.  On an Adaptive Multi-Mask Overlay Strategy for Topology Optimization of Structures and Compliant Mechanisms , 2009 .

[9]  Marc Schoenauer,et al.  Genetic Operators for Two-Dimensional Shape Optimization , 1995, Artificial Evolution.

[10]  John Parry,et al.  An additive design heatsink geometry topology identification and optimisation algorithm , 2015, 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM).

[11]  Damir Vučina,et al.  Evolutionary topology optimization using parameterized b-spline surface , 2016 .

[12]  Kazuhiro Saitou,et al.  Topology Synthesis of Multicomponent Structural Assemblies in Continuum Domains , 2011 .

[13]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[14]  K. Maute,et al.  A parametric level-set approach for topology optimization of flow domains , 2010 .

[15]  Guan-Chun Luh,et al.  A Binary Particle Swarm Optimization for Structural Topology Optimization , 2010, 2010 Third International Joint Conference on Computational Science and Optimization.

[16]  Ole Sigmund,et al.  On the usefulness of non-gradient approaches in topology optimization , 2011 .

[17]  Anthony T. Patera,et al.  Analysis of a part design procedure , 1995 .

[18]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[19]  Takayuki Yamada,et al.  A topology optimization method based on the level set method incorporating a fictitious interface energy , 2010 .

[20]  Hesham A. Hegazi,et al.  Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach , 2015 .

[21]  H. Chickermane,et al.  Design of multi-component structural systems for optimal layout topology and joint locations , 1997, Engineering with Computers.

[22]  Kazuhiro Saitou,et al.  DECOMPOSITION-BASED ASSEMBLY SYNTHESIS BASED ON STRUCTURAL CONSIDERATIONS , 2002 .

[23]  Anupam Saxena,et al.  A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization , 2008 .

[24]  Kalyanmoy Deb,et al.  An Improved Initial Population Strategy for Compliant Mechanism Designs Using Evolutionary Optimization , 2008, DAC 2008.

[25]  Guan-Chun Luh,et al.  Structural topology optimization using ant colony optimization algorithm , 2009, Appl. Soft Comput..

[26]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[27]  A. Saxena On Multiple-Material Optimal Compliant Topologies: Discrete Variable Parameterization Using Genetic Algorithm , 2002 .

[28]  Sujin Bureerat,et al.  Multi-objective topology optimization using evolutionary algorithms , 2011 .

[29]  Kalyanmoy Deb,et al.  Multi-Objective Evolutionary Algorithms for Engineering Shape Design , 2003 .

[30]  Chun-Yin Wu,et al.  Topology optimization of structures using modified binary differential evolution , 2010 .

[31]  T. Belytschko,et al.  Topology optimization with implicit functions and regularization , 2003 .

[32]  F. Keulen,et al.  Topology optimization using a Topology Description function , 2004 .

[33]  Sujin Bureerat,et al.  Topology Optimisation Using MPBILs and Multi-Grid Ground Element , 2018 .

[34]  Kazuhiro Saitou,et al.  Decomposition-Based Assembly Synthesis for Structural Stiffness , 2003 .

[35]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[36]  F. Keulen,et al.  Topology optimization for heat flow manipulation , 2016 .

[37]  Sujin Bureerat,et al.  Topological design of structures using population-based optimization methods , 2006, Inverse Problems in Science and Engineering.

[38]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[39]  Hesham A. Hegazi,et al.  An Explicit Level-Set Approach for Structural Topology Optimization , 2013, DAC 2013.

[40]  Anupam Saxena On Optimization of 2D Compliant Mechanisms Using Honeycomb Discretization With Material-Mask Overlay Strategy , 2007, DAC 2007.

[41]  Kazuhiro Saitou,et al.  Decomposition-Based Assembly Synthesis for Structural Stiffness and Dimensional Integrity , 2004 .

[42]  Einar M. Rønquist,et al.  A computational procedure for part design , 1992 .

[43]  Prabhat Kumar,et al.  Synthesis of C0 Path-Generating Contact-Aided Compliant Mechanisms Using the Material Mask Overlay Method , 2016 .

[44]  M. Jakiela,et al.  Genetic algorithm-based structural topology design with compliance and topology simplification considerations , 1996 .

[45]  David Guirguis,et al.  An evolutionary multi-objective topology optimization framework for welded structures , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[46]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[47]  Afzal Suleman,et al.  Spectral Level Set Methodology in MDO , 2004 .

[48]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[49]  Geoffrey Boothroyd,et al.  Product design for manufacture and assembly , 1994, Comput. Aided Des..

[50]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[51]  Xu Guo,et al.  Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework , 2014 .

[52]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[53]  Michèle Sebag,et al.  Compact Unstructured Representations for Evolutionary Design , 2002, Applied Intelligence.

[54]  M. Burger,et al.  Incorporating topological derivatives into level set methods , 2004 .

[55]  Kazuhiro Saitou,et al.  Topology Optimization of Multi-Component Structures via Decomposition-Based Assembly Synthesis , 2003, DAC 2003.

[56]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[57]  David Guirguis,et al.  A derivative-free level-set method for topology optimization , 2016 .

[58]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[59]  Kazuhiro Saitou,et al.  Genetic algorithms as an approach to configuration and topology design , 1994, DAC 1993.

[60]  Kurt Maute,et al.  Level-set methods for structural topology optimization: a review , 2013 .

[61]  Kazuhiro Saitou,et al.  Topology Optimization of Multicomponent Beam Structure via Decomposition-Based Assembly Synthesis , 2005 .

[62]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[63]  M. Y. Wang,et al.  An enhanced genetic algorithm for structural topology optimization , 2006 .

[64]  Francesco Iorio,et al.  Parameters tell the design story: ideation and abstraction in design optimization , 2014, ANSS 2014.

[65]  Kazuhiro Saitou,et al.  Decomposition-Based Assembly Synthesis of Space Frame Structures Using Joint Library , 2006 .

[66]  R. Boichot,et al.  A genetic algorithm for topology optimization of area-to-point heat conduction problem , 2016 .

[67]  Alexandra A. Gomes,et al.  A New Tool for Topology Optimization With Gradient-Guided Spectral Level Set Methodology , 2011 .

[68]  Guan-Chun Luh,et al.  A binary particle swarm optimization for continuum structural topology optimization , 2011, Appl. Soft Comput..

[69]  Juan C. Meza,et al.  A comparison of a direct search method and a genetic algorithm for conformational searching , 1996 .

[70]  Sujin Bureerat,et al.  Performance enhancement of evolutionary search for structural topology optimisation , 2006 .

[71]  Eric Sandgren,et al.  Automotive Structural Design Employing a Genetic Optimization Algorithm , 1992 .

[72]  Takayuki Yamada,et al.  Matlab code for a level set-based topology optimization method using a reaction diffusion equation , 2014, Structural and Multidisciplinary Optimization.

[73]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[74]  T. Shi,et al.  A level set method for shape and topology optimization of both structure and support of continuum structures , 2014 .

[75]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[76]  M. Jakiela,et al.  Continuum structural topology design with genetic algorithms , 2000 .

[77]  Kalyanmoy Deb,et al.  Structural topology optimization using multi-objective genetic algorithm with constructive solid geometry representation , 2016, Appl. Soft Comput..

[78]  Nikhil Padhye Topology optimization of compliant mechanism using multi-objective particle swarm optimization , 2008, GECCO '08.

[79]  Markus Olhofer,et al.  Hybrid evolutionary approach for level set topology optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[80]  Hesham A. Hegazi,et al.  Image Matching Assessment of Attainable Topology via Kriging-Interpolated Level-Sets , 2014, DAC 2014.

[81]  Jian Zhang,et al.  A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model , 2016 .

[82]  A. Suleman,et al.  Application of spectral level set methodology in topology optimization , 2006 .

[83]  Kazuhiro Saitou,et al.  Decomposition Templates and Joint Morphing Operators for Genetic Algorithm Optimization of Multicomponent Structural Topology , 2014 .