Application of a Numerical Inverse Laplace Integration Method to Surface Loading on a Viscoelastic Compressible Earth Model

[1]  J. Okuno,et al.  A new method for the computation of global viscoelastic post‐seismic deformation in a realistic earth model (II)‐horizontal displacement , 2007 .

[2]  H. Steffen,et al.  Three-dimensional finite-element modeling of the glacial isostatic adjustment in Fennoscandia , 2006 .

[3]  L. Boschi,et al.  Using the Post-Widder formula to compute the Earth's viscoelastic Love numbers , 2006 .

[4]  J. Okuno,et al.  A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (I)—vertical displacement and gravity variation , 2006 .

[5]  J. Wahr,et al.  What Might GRACE Contribute to Studies of Post Glacial Rebound? , 2003 .

[6]  A. Paulson,et al.  Three-dimensional finite-element modelling of Earth's viscoelastic deformation: effects of lateral variations in lithospheric thickness , 2003 .

[7]  Detlef Wolf,et al.  Compressible viscoelasticity: stability of solutions for homogeneous plane-Earth models , 2003 .

[8]  J. Mitrovica,et al.  Gravitational stability of spherical self‐gravitating relaxation models , 2000 .

[9]  Z. Martinec Spectral–finite element approach to three‐dimensional viscoelastic relaxation in a spherical earth , 2000 .

[10]  D. Yuen,et al.  Secular gravitational instability of a compressible viscoelastic sphere , 1999 .

[11]  J. Tromp,et al.  On Maxwell singularities in postglacial rebound , 1999 .

[12]  L. Vermeersen,et al.  A new class of stratified viscoelastic models by analytical techniques , 1997 .

[13]  G. Spada,et al.  Compressible rotational deformation , 1996 .

[14]  Patrick Wu,et al.  Some analytical solutions for the viscoelastic gravitational relaxation of a two-layer non-self-gravitating incompressible spherical earth , 1996 .

[15]  M. Fang,et al.  The singularity mystery associated with a radially continuous Maxwell viscoelastic structure , 1995 .

[16]  Hans-Peter Plag,et al.  Rayleigh-Taylor instabilities of a self-gravitating Earth , 1995 .

[17]  D. Yuen,et al.  Time‐domain approach for the transient responses in stratified viscoelastic Earth models , 1995 .

[18]  J. Wahr,et al.  The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound , 1995 .

[19]  M. Fang,et al.  A singularity free approach to post glacial rebound calculations , 1994 .

[20]  Detlef Wolf,et al.  Lamé's problem of gravitational viscoelasticity: the isochemical, incompressible planet , 1994 .

[21]  Y. Ricard,et al.  Inferring the viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities , 1991 .

[22]  W. Peltier,et al.  ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of po , 1991 .

[23]  W. Press,et al.  Numerical Recipes: FORTRAN , 1990 .

[24]  W. Peltier,et al.  Viscous gravitational relaxation , 1982 .

[25]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[26]  S. M. Nakiboglu,et al.  Seamount loading and stress in the ocean lithosphere , 1980 .

[27]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[28]  F. Dahlen On the Static Deformation of an Earth Model with a Fluid Core , 1974 .

[29]  Z. Martinec,et al.  Material versus local incompressibility and its influence onglacial‐isostatic adjustment , 2001 .

[30]  D. Wolf,et al.  Effects due to compressional and compositional density stratification on load-induced Maxwell viscoelastic perturbations , 2000 .

[31]  D. Wolf Gravitational viscoelastodynamics for a hydrostatic planet , 1993 .

[32]  D. Wolf The normal modes of a layered, incompressible Maxwell half-space , 1985 .

[33]  D. Wolf The normal modes of a uniform, compressible Maxwell half-space , 1985 .