DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE
暂无分享,去创建一个
C. A. Grady | Timothy D. Brandt | G. Serabyn | O. Guyon | Y. Hayano | M. Tamura | T. Henning | M. Momose | K. W. Hodapp | S. Miyama | M. Janson | M. Feldt | S. Egner | W. Brandner | R. Suzuki | N. Ohashi | E. Akiyama | L. Abe | M. Iye | G. R. Knapp | A. Kataoka | M. Goto | H. Terada | J. Wisniewski | L. Abe | M. Tamura | K. Hodapp | A. Moro-martin | O. Guyon | T. Matsuo | M. McElwain | T. Henning | W. Brandner | M. Feldt | C. Thalmann | M. Janson | M. Goto | E. Turner | G. Knapp | S. Egner | S. Miyama | H. Suto | M. Kuzuhara | T. Kudo | N. Kusakabe | T. Yamada | Y. Hayano | N. Takato | J. Morino | J. Kwon | J. Hashimoto | R. Kandori | M. Iye | M. Sitko | T. Nishimura | T. Usuda | Y. Takahashi | C. Grady | A. Kataoka | R. Suzuki | D. Tomono | H. Takami | T. Pyo | H. Terada | M. Watanabe | T. Currie | M. Takami | T. Tsukagoshi | M. Momose | M. Hayashi | S. Hayashi | T. Suenaga | E. Akiyama | C. Thalmann | T. D. Brandt | M. W. McElwain | T. Currie | T. Usuda | J. Hashimoto | S. Hayashi | R. Kandori | T. Kudo | N. Kusakabe | M. Kuzuhara | J. Kwon | T. Matsuo | T. Nishimura | H. Suto | M. Takami | N. Takato | D. Tomono | E. L. Turner | M. Watanabe | T. Yamada | H. Takami | A. Moro-Martin | T. Suenaga | Y. H. Takahashi | J. Wisniewski | M. Hayashi | T. Muto | N. Ohashi | T. Muto | G. Serabyn | M. Ishi | M. L. Sitko | J. C. C. S. Mayama | T. -S. Pyo | T. Tsukagoshi | J. C. Carson S. Mayama | M. Ishi | J. -I. Morino | A. Moro-Martin
[1] J. Wisniewski,et al. SUBARU IMAGING OF ASYMMETRIC FEATURES IN A TRANSITIONAL DISK IN UPPER SCORPIUS , 2012, 1211.3284.
[2] Michael F. Skrutskie,et al. Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .
[3] David Wilner,et al. Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .
[4] L. Hartmann,et al. Model scattering envelopes of young stellar objects. I - Method and application to circumstellar disks , 1992 .
[5] T. Henning,et al. Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.
[6] B. Dubrulle,et al. The Dust Subdisk in the Protoplanetary Nebula , 1995 .
[7] Jonathan P. Williams,et al. THE TW Hya DISK AT 870 μm: COMPARISON OF CO AND DUST RADIAL STRUCTURES , 2011, 1111.5037.
[8] Barbara Ercolano,et al. Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation , 2010, 1010.0826.
[9] Local Enhancement of the Surface Density in the Protoplanetary Ring Surrounding HD 142527 , 2013, 1309.7400.
[10] H. Kimura,et al. Growth efficiency of dust aggregates through collisions with high mass ratios , 2013 .
[11] Katherine Rosenfeld,et al. AN AZIMUTHAL ASYMMETRY IN THE LkHα 330 DISK , 2013, 1307.5848.
[12] Scott J. Kenyon,et al. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .
[13] Olivier Guyon,et al. HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU , 2013, 1306.1887.
[14] S. Inutsuka,et al. TWO-DIMENSIONAL STUDY OF THE PROPAGATION OF PLANETARY WAKE AND THE INDICATION OF GAP OPENING IN AN INVISCID PROTOPLANETARY DISK , 2010, 1009.4963.
[15] Timothy D. Brandt,et al. Recovery of the Candidate Protoplanet HD 100546 b with Gemini/NICI and Detection of Additional (Planet-Induced?) Disk Structure at Small Separations , 2014, 1411.0315.
[16] P. Goldreich,et al. Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.
[17] Shane Jacobson,et al. Concept and science of HiCIAO: high contrast instrument for the Subaru next generation adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.
[18] M. Min,et al. On the structure of the transition disk around TW Hydrae , 2014, 1402.6597.
[19] A. Oka,et al. Observational Possibility of the "Snow Line" on the Surface of Circumstellar Disks with the Scattered Light , 2008, 0802.0906.
[20] N. Calvet,et al. An Inner Hole in the Disk around TW Hydrae Resolved in 7 mm Dust Emission , 2007, 0704.2422.
[21] Olivier Guyon,et al. Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.
[22] K. Miyake,et al. Effects of Particle Size Distribution on Opacity Curves of Protoplanetary Disks around T Tauri Stars , 1993 .
[23] John E. Krist,et al. WFPC2 Images of a Face-on Disk Surrounding TW Hydrae , 2000 .
[24] Catherine Espaillat,et al. RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.
[25] N. Calvet,et al. CO J = 6-5 Observations of TW Hydrae with the Submillimeter Array , 2006 .
[26] B. Ercolano,et al. The imprint of photoevaporation on edge-on discs , 2010, 1010.1079.
[27] C. A. Grady,et al. SPIRAL ARMS IN THE ASYMMETRICALLY ILLUMINATED DISK OF MWC 758 AND CONSTRAINTS ON GIANT PLANETS , 2012, 1212.1466.
[28] D. Wilner,et al. Gas and Dust Emission at the Outer Edge of Protoplanetary Disks , 2008, 0801.4763.
[29] CfAO,et al. SPECKLE SUPPRESSION THROUGH DUAL IMAGING POLARIMETRY, AND A GROUND-BASED IMAGE OF THE HR 4796A CIRCUMSTELLAR DISK , 2009, 0906.3010.
[30] A. J. Weinberger,et al. THE 0.5–2.22 μm SCATTERED LIGHT SPECTRUM OF THE DISK AROUND TW Hya: DETECTION OF A PARTIALLY FILLED DISK GAP AT 80 AU , 2013, 1306.2969.
[31] H. Kimura,et al. COLLISIONAL GROWTH CONDITIONS FOR DUST AGGREGATES , 2009 .
[32] Spatially Resolved Spectroscopy and Coronagraphic Imaging of the TW Hydrae Circumstellar Disk , 2004, astro-ph/0410251.
[33] A. Krone-Martins,et al. The TW Hydrae association: trigonometric parallaxes and kinematic analysis ? , 2014, 1401.1935.
[34] C. Clarke,et al. The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .
[35] G. Blake,et al. Imaging the Disk around TW Hydrae with the Submillimeter Array , 2004, astro-ph/0403412.
[36] Hannah Jang-Condell,et al. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. I. METHODOLOGY AND VALIDATION , 2012, 1202.3465.
[37] B. Ercolano,et al. Can grain growth explain transition disks , 2012, 1206.5802.
[38] Geoffrey A. Blake,et al. An old disk still capable of forming a planetary system , 2013, Nature.
[39] Catherine Espaillat,et al. TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.
[40] E. Kokubo,et al. DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE , 2011, 1102.4408.
[41] Christian Thalmann,et al. Reduction of polarimetric data using Mueller calculus applied to Nasmyth instruments , 2008, Astronomical Telescopes + Instrumentation.
[42] C. A. Grady,et al. DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.
[43] Berkeley,et al. Infrared Views of the TW Hydra Disk , 2001, astro-ph/0110342.
[44] INFRARED VIEWS OF THE TW HYDRA DISK , .
[45] Olivier Guyon,et al. POLARIMETRIC IMAGING OF LARGE CAVITY STRUCTURES IN THE PRE-TRANSITIONAL PROTOPLANETARY DISK AROUND PDS 70: OBSERVATIONS OF THE DISK , 2012, 1208.2075.
[46] Hannah Jang-Condell,et al. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS , 2013, 1305.6313.
[47] Heidelberg,et al. NACO polarimetric differential imaging of TW Hya A sharp look at the closest T Tauri disk , 2004 .
[48] F. V. Leeuwen,et al. Hipparcos, the New Reduction of the Raw Data , 2007 .