Human Leukocyte Antigen B27‐Negative Axial Spondyloarthritis: What Do We Know?

Axial spondyloarthritis (axSpA) is a chronic, immune-mediated disease characterized by inflammatory axial skeleton involvement and extra-musculoskeletal manifestations. The continuum of axSpA ranges from nonradiographic axSpA (nr-axSpA) to ankylosing spondylitis, also known as radiographic axSpA; the latter is defined by definitive radiographic sacroiliitis. Human leukocyte antigen B27 (HLA-B27) is a genetic marker strongly associated with axSpA; it aids in the diagnosis of axSpA, and its absence leads to delay in diagnosis. For HLA-B27-negative patients, disease pathogenesis is poorly understood, signs and symptoms are frequently underrecognized, and diagnosis and treatment are commonly delayed. The proportion of HLA-B27-negative patients may be higher among non-White patients and those with nr-axSpA, who can face additional diagnostic challenges related to lack of definitive radiographic sacroiliitis. In this narrative review, we discuss the role of HLA-B27 in the diagnosis and pathogenesis of axSpA and highlight various pathways and genes that may be related to axSpA pathogenesis in HLA-B27-negative patients. We also emphasize the need to characterize gut microbial communities in these patients. Adequate understanding of clinical and pathological features underlying HLA-B27-negative patients with axSpA will improve diagnosis, treatment, and outcomes for this complex inflammatory disease.

[1]  I. Jurisica,et al.  Macrophage migration inhibitory factor drives pathology in a mouse model of spondyloarthritis and is associated with human disease , 2021, Science Translational Medicine.

[2]  S. J. Zargar,et al.  Monocyte-derived and M1 macrophages from ankylosing spondylitis patients released higher TNF-α and expressed more IL1B in response to BzATP than macrophages from healthy subjects , 2021, Scientific Reports.

[3]  J. Berthelot,et al.  Contribution of mycobiota to the pathogenesis of spondyloarthritis. , 2021, Joint bone spine.

[4]  S. Ruta,et al.  The Role of HLA-B27 in Argentinian Axial Spondyloarthritis Patients , 2021, Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases.

[5]  J. Reveille,et al.  HLA-B27 is associated with reduced disease activity in axial spondyloarthritis , 2021, Scientific Reports.

[6]  C. Bundy,et al.  Identifying parameters associated with delayed diagnosis in axial spondyloarthritis: data from the European map of axial spondyloarthritis , 2021, Rheumatology.

[7]  M. Brown,et al.  Polygenic Risk Scores have high diagnostic capacity in ankylosing spondylitis , 2021, Annals of the Rheumatic Diseases.

[8]  D. Wallace,et al.  Experience with milatuzumab, an anti-CD74 antibody against immunomodulatory macrophage migration inhibitory factor (MIF) receptor, for systemic lupus erythematosus (SLE) , 2021, Annals of the Rheumatic Diseases.

[9]  A. Kalla,et al.  Spondyloarthritis in North Africa: an update , 2021, Clinical Rheumatology.

[10]  A. Nakamura,et al.  Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis , 2021, Seminars in Immunopathology.

[11]  M. Brown,et al.  Inflammasome Activation in Ankylosing Spondylitis Is Associated With Gut Dysbiosis , 2021, Arthritis & rheumatology.

[12]  Jin Xia,et al.  The role of CARD9 gene polymorphism in inflammatory diseases , 2020 .

[13]  Jian Xu,et al.  Comparison of Clinical Features in HLA-B27 Positive and Negative Patients With Axial Spondyloarthritis: Results From a Cohort of 4,131 Patients , 2020, Frontiers in Medicine.

[14]  D. McGonagle,et al.  Intestinal and enthesis innate immunity in early axial spondyloarthropathy , 2020, Rheumatology.

[15]  M. Brown,et al.  Genetics and the axial spondyloarthritis spectrum , 2020, Rheumatology.

[16]  M. Magrey,et al.  Recognizing Axial Spondyloarthritis: A Guide for Primary Care. , 2020, Mayo Clinic proceedings.

[17]  M. Abdelaziz,et al.  Diagnostic value of anti-CD74 antibodies in early and late axial spondyloarthritis and its relationship to disease activity. , 2020, Rheumatology.

[18]  M. Brown,et al.  Biomarker development for axial spondyloarthritis , 2020, Nature Reviews Rheumatology.

[19]  V. Strand,et al.  FRI0271 IMPACT OF HLA-B27 STATUS ON CLINICAL OUTCOMES AMONG PATIENTS WITH ANKYLOSING SPONDYLITIS TREATED WITH SECUKINUMAB , 2020, Annals of the Rheumatic Diseases.

[20]  A. Deodhar,et al.  Understanding differences between men and women with axial spondyloarthritis. , 2020, Seminars in arthritis and rheumatism.

[21]  L. Coates,et al.  The Phenotype of Axial Spondyloarthritis: Is It Dependent on HLA–B27 Status? , 2020, Arthritis care & research.

[22]  F. Ariel,et al.  Ixekizumab for patients with non-radiographic axial spondyloarthritis (COAST-X): a randomised, placebo-controlled trial , 2019, The Lancet.

[23]  P. Luo,et al.  The multifaceted role of CARD9 in inflammatory bowel disease , 2019, Journal of cellular and molecular medicine.

[24]  W. Maksymowych,et al.  The Pathogenesis of Ankylosing Spondylitis: an Update , 2019, Current Rheumatology Reports.

[25]  Y. Kwan,et al.  Comparison of ankylosing spondylitis and non‐radiographic axial spondyloarthritis in a multi‐ethnic Asian population of Singapore , 2019, International journal of rheumatic diseases.

[26]  R. Bucala,et al.  The immunobiology of MIF: function, genetics and prospects for precision medicine , 2019, Nature Reviews Rheumatology.

[27]  D. Furst,et al.  Targeting inflammatory pathways in axial spondyloarthritis , 2019, Arthritis Research & Therapy.

[28]  T. Witte,et al.  HLA‐B27 prevalence in axial spondyloarthritis patients and in blood donors in a Lebanese population: Results from a nationwide study , 2019, International journal of rheumatic diseases.

[29]  T. Witte,et al.  Added Value of Anti-CD74 Autoantibodies in Axial SpondyloArthritis in a Population With Low HLA-B27 Prevalence , 2019, Front. Immunol..

[30]  Ningning Li,et al.  Altered Bacterial-Fungal Interkingdom Networks in the Guts of Ankylosing Spondylitis Patients , 2019, mSystems.

[31]  W. Maksymowych Biomarkers for Diagnosis of Axial Spondyloarthritis, Disease Activity, Prognosis, and Prediction of Response to Therapy , 2019, Front. Immunol..

[32]  H. Garchon,et al.  Genetics and Functional Genomics of Spondyloarthritis , 2018, Front. Immunol..

[33]  M. Moreno,et al.  Influence of HLA-B27 on the Ankylosing Spondylitis phenotype: results from the REGISPONSER database , 2018, Arthritis Research & Therapy.

[34]  S. Mostafaei,et al.  Increased inflammatory responsiveness of peripheral blood mononuclear cells (PBMCs) to in vitro NOD2 ligand stimulation in patients with ankylosing spondylitis , 2018, Immunopharmacology and immunotoxicology.

[35]  E. E. Vance,et al.  Nod2 Deficiency Augments Th17 Responses and Exacerbates Autoimmune Arthritis , 2018, The Journal of Immunology.

[36]  M. Lionakis,et al.  Human CARD9: A Critical Molecule of Fungal Immune Surveillance , 2018, Front. Immunol..

[37]  R. Landewé,et al.  Do ethnicity, degree of family relationship, and the spondyloarthritis subtype in affected relatives influence the association between a positive family history for spondyloarthritis and HLA-B27 carriership? Results from the worldwide ASAS cohort , 2018, Arthritis Research & Therapy.

[38]  K. Gaffney,et al.  The clinical utility of human leucocyte antigen B27 in axial spondyloarthritis , 2018, Rheumatology.

[39]  R. Landewé,et al.  Are gender-specific approaches needed in diagnosing early axial spondyloarthritis? Data from the SPondyloArthritis Caught Early cohort , 2018, Arthritis Research & Therapy.

[40]  V. Mazurov,et al.  THU0258 Diagnostic value of anti-cd74 autoantibodies in axial spondyloarthritis and axial psoriatic arthritis. results of open-label, cross-sectional, controlled, multicenter progress study , 2018, THURSDAY, 14 JUNE 2018.

[41]  J. Schoones,et al.  Pathophysiology of axial spondyloarthritis: Consensus and controversies , 2018, European journal of clinical investigation.

[42]  D. Baeten,et al.  Anti-CD74 antibodies have no diagnostic value in early axial spondyloarthritis: data from the spondyloarthritis caught early (SPACE) cohort , 2018, Arthritis Research & Therapy.

[43]  L. Stronati,et al.  NOD2 and inflammation: current insights , 2018, Journal of inflammation research.

[44]  J. Clemente,et al.  Gut Microbiota Perturbations in Reactive Arthritis and Postinfectious Spondyloarthritis , 2018, Arthritis & rheumatology.

[45]  Xiaoming Zhong,et al.  Molecular and physiological roles of the adaptor protein CARD9 in immunity , 2018, Cell Death & Disease.

[46]  Y. Bakri,et al.  Does HLA-B27 Status Influence Ankylosing Spondylitis Phenotype? , 2018, Clinical medicine insights. Arthritis and musculoskeletal disorders.

[47]  M. Brown,et al.  Progress of genome-wide association studies of ankylosing spondylitis , 2017, Clinical & translational immunology.

[48]  F. Ciccia,et al.  Macrophage Migration Inhibitory Factor Induces Inflammation and Predicts Spinal Progression in Ankylosing Spondylitis , 2017, Arthritis & rheumatology.

[49]  M. Brown,et al.  Ethnicity and disease severity in ankylosing spondylitis a cross-sectional analysis of three ethnic groups , 2017, Clinical Rheumatology.

[50]  J. Sieper,et al.  Axial spondyloarthritis , 2017, The Lancet.

[51]  J. Tap,et al.  Faecal microbiota study reveals specific dysbiosis in spondyloarthritis , 2017, Annals of the rheumatic diseases.

[52]  M. Brown,et al.  Pathogenesis of ankylosing spondylitis — recent advances and future directions , 2017, Nature Reviews Rheumatology.

[53]  Muhammad Asim Khan,et al.  An Update on the Genetic Polymorphism of HLA-B*27 With 213 Alleles Encompassing 160 Subtypes (and Still Counting) , 2017, Current Rheumatology Reports.

[54]  N. Ajami,et al.  IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation , 2017, Science Translational Medicine.

[55]  A. Loft,et al.  Ankylosing Spondylitis versus Nonradiographic Axial Spondyloarthritis: Comparison of Tumor Necrosis Factor Inhibitor Effectiveness and Effect of HLA-B27 Status. An Observational Cohort Study from the Nationwide DANBIO Registry , 2017, The Journal of Rheumatology.

[56]  R. Winchester,et al.  Implications of the diversity of class I HLA associations in psoriatic arthritis. , 2016, Clinical immunology.

[57]  Simon C. Potter,et al.  Exome-wide study of ankylosing spondylitis demonstrates additional shared genetic background with inflammatory bowel disease , 2016, npj Genomic Medicine.

[58]  A. Jamshidi,et al.  Diagnostic Delay in Ankylosing Spondylitis: Related Factors and Prognostic Outcomes. , 2016, Archives of rheumatology.

[59]  Søren Brunak,et al.  Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci , 2016, Nature Genetics.

[60]  M. Garshasbi,et al.  Determination of IL1R2, ANTXR2, CARD9, and SNAPC4 single nucleotide polymorphisms in Iranian patients with ankylosing spondylitis , 2016, Rheumatology International.

[61]  J. Braun,et al.  Non-radiographic axial spondyloarthritis and ankylosing spondylitis: what are the similarities and differences? , 2015, RMD Open.

[62]  Mark Asquith,et al.  The intestinal microbiome in spondyloarthritis , 2015, Current opinion in rheumatology.

[63]  R. Winchester,et al.  Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype , 2015, Arthritis Research & Therapy.

[64]  J. Reveille Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis , 2015, Clinical Rheumatology.

[65]  L. Glimcher,et al.  Endoplasmic reticulum stress in immunity. , 2015, Annual review of immunology.

[66]  D. M. van der Heijde,et al.  IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. , 2015, Rheumatology.

[67]  Julia Manasson,et al.  Decreased Bacterial Diversity Characterizes the Altered Gut Microbiota in Patients With Psoriatic Arthritis, Resembling Dysbiosis in Inflammatory Bowel Disease , 2015, Arthritis & rheumatology.

[68]  Mhairi Marshall,et al.  Brief Report: Intestinal Dysbiosis in Ankylosing Spondylitis , 2014, Arthritis & rheumatology.

[69]  D. Aguirre de Cárcer,et al.  ZAP‐70 Genotype Disrupts the Relationship Between Microbiota and Host, Leading to Spondyloarthritis and Ileitis in SKG Mice , 2014, Arthritis & rheumatology.

[70]  Y. Gong,et al.  Evidence for Genetic Association of CARD9 and SNAPC4 with Ankylosing Spondylitis in a Chinese Han Population , 2014, The Journal of Rheumatology.

[71]  R. Colbert,et al.  Review: The Interleukin‐23/Interleukin‐17 Axis in Spondyloarthritis Pathogenesis: Th17 and Beyond , 2014, Arthritis & rheumatology.

[72]  D. Wallis,et al.  Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis: Part of a Common Spectrum or Distinct Diseases? , 2013, The Journal of Rheumatology.

[73]  M. De Vos,et al.  Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort , 2013, Annals of the rheumatic diseases.

[74]  Z. Liu,et al.  Epidemiological comparison of clinical manifestations according to HLA-B*27 carrier status of Chinese ankylosing spondylitis patients. , 2013, Tissue antigens.

[75]  M. Dougados,et al.  Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study , 2013, Annals of the rheumatic diseases.

[76]  S. Raimondo,et al.  Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation , 2013, Annals of the rheumatic diseases.

[77]  J. Reveille,et al.  The Epidemiology of Back Pain, Axial Spondyloarthritis and HLA-B27 in the United States , 2013, The American journal of the medical sciences.

[78]  J. Braun,et al.  High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis , 2013, Annals of the rheumatic diseases.

[79]  P. Bowness,et al.  KIR3DL2 Binds to HLA-B27 Dimers and Free H Chains More Strongly than Other HLA Class I and Promotes the Expansion of T Cells in Ankylosing Spondylitis , 2013, The Journal of Immunology.

[80]  M. De Vos,et al.  Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model , 2012, Annals of the rheumatic diseases.

[81]  P. Bowness,et al.  The link between HLA-B27 and SpA--new ideas on an old problem. , 2012, Rheumatology.

[82]  M. Hammoudeh,et al.  HLA-B27 Prevalence in Arab Populations and Among Patients with Ankylosing Spondylitis , 2012, The Journal of Rheumatology.

[83]  T. Mcclanahan,et al.  IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4−CD8− entheseal resident T cells , 2012, Nature Medicine.

[84]  M. Dubinsky,et al.  Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis , 2012, Science.

[85]  J. Reveille,et al.  Prevalence of axial spondylarthritis in the United States: Estimates from a cross‐sectional survey , 2012, Arthritis care & research.

[86]  J. Reveille,et al.  Genetics of spondyloarthritis—beyond the MHC , 2012, Nature Reviews Rheumatology.

[87]  M. Carroll,et al.  The prevalence of HLA-B27 in the US: data from the US National Health and Nutrition Examination Survey, 2009. , 2012, Arthritis and rheumatism.

[88]  F. V. van Gaalen Does HLA‐B*2706 protect against ankylosing spondylitis? A meta‐analysis , 2012, International journal of rheumatic diseases.

[89]  Paul Weston,et al.  Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility , 2011, Nature Genetics.

[90]  M. Dougados,et al.  HLA-B27 positive patients differ from HLA-B27 negative patients in clinical presentation and imaging: results from the DESIR cohort of patients with recent onset axial spondyloarthritis , 2011, Annals of the rheumatic diseases.

[91]  Piet Geusens,et al.  Predicting the outcome of ankylosing spondylitis therapy , 2011, Annals of the rheumatic diseases.

[92]  J. Reveille The genetic basis of spondyloarthritis , 2011, Annals of the rheumatic diseases.

[93]  Fraser Cummings,et al.  Th17 Cells Expressing KIR3DL2+ and Responsive to HLA-B27 Homodimers Are Increased in Ankylosing Spondylitis , 2011, The Journal of Immunology.

[94]  H. Direskeneli,et al.  Determinants of Early Radiographic Progression in Ankylosing Spondylitis , 2010, The Journal of Rheumatology.

[95]  K. Kristjánsson,et al.  A strong familiality of ankylosing spondylitis through several generations , 2010, Annals of the rheumatic diseases.

[96]  Tae-Hwan Kim,et al.  Clinical spectrum of ankylosing spondylitis in Korea. , 2010, Joint, bone, spine : revue du rhumatisme.

[97]  Jennifer J Pointon,et al.  Elucidating the Chromosome 9 Association with AS; CARD9 is a Candidate Gene , 2010, Genes and Immunity.

[98]  Michael M. Ward,et al.  Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci , 2010, Nature Genetics.

[99]  John D Reveille,et al.  The chromosome 16q region associated with ankylosing spondylitis includes the candidate gene tumour necrosis factor receptor type 1-associated death domain (TRADD) , 2009, Annals of the rheumatic diseases.

[100]  R. Colbert,et al.  HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. , 2009, Arthritis and rheumatism.

[101]  N. Sandu,et al.  Ankylosing spondylitis in sub-Saharan Africa , 2009, Postgraduate Medical Journal.

[102]  T. Kim,et al.  HLA-B27 homozygosity has no influence on clinical manifestations and functional disability in ankylosing spondylitis. , 2009, Clinical and experimental rheumatology.

[103]  H. Reichardt,et al.  Spondylarthritis in HLA-B27/human beta2-microglobulin-transgenic rats is not prevented by lack of CD8. , 2009, Arthritis and rheumatism.

[104]  K. Frazer,et al.  Common vs. rare allele hypotheses for complex diseases. , 2009, Current opinion in genetics & development.

[105]  K. Mitsuyama,et al.  Overview of the role of macrophage migration inhibitory factor (MIF) in inflammatory bowel disease. , 2009, Current pharmaceutical design.

[106]  M. Dougados,et al.  The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis , 2009, Annals of the rheumatic diseases.

[107]  Paul Wordsworth,et al.  Effectiveness, Safety, and Predictors of Good Clinical Response in 1250 Patients Treated with Adalimumab for Active Ankylosing Spondylitis , 2009, The Journal of Rheumatology.

[108]  M. Dougados,et al.  The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection , 2009, Annals of the rheumatic diseases.

[109]  M. Hickey,et al.  Mechanisms of Disease: macrophage migration inhibitory factor in SLE, RA and atherosclerosis , 2008, Nature Clinical Practice Rheumatology.

[110]  W. Weichert,et al.  Fungi and inflammatory bowel diseases: Alterations of composition and diversity , 2008, Scandinavian journal of gastroenterology.

[111]  Simon C. Potter,et al.  Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants , 2007, Nature Genetics.

[112]  J. Ruland,et al.  Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17 , 2007, Nature Immunology.

[113]  J. Penninger,et al.  The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors , 2007, Nature Immunology.

[114]  A. McMichael,et al.  Interaction of HLA‐B27 homodimers with KIR3DL1 and KIR3DL2, unlike HLA‐B27 heterotrimers, is independent of the sequence of bound peptide , 2007, European journal of immunology.

[115]  J. Reveille Major histocompatibility genes and ankylosing spondylitis. , 2006, Best practice & research. Clinical rheumatology.

[116]  A. Paradela,et al.  Two HLA-B14 Subtypes (B*1402 and B*1403) Differentially Associated with Ankylosing Spondylitis Differ Substantially in Peptide Specificity but Have Limited Peptide and T-cell Epitope Sharing with HLA-B27* , 2005, Journal of Biological Chemistry.

[117]  J. Sieper,et al.  The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? , 2005, Arthritis and rheumatism.

[118]  D. Laukens,et al.  CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease , 2004, Annals of the rheumatic diseases.

[119]  C. Tsai,et al.  HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. , 2004, Rheumatology.

[120]  D. M. van der Heijde,et al.  How to diagnose axial spondyloarthritis early , 2004, Annals of the rheumatic diseases.

[121]  N. Sheehan The Ramifications of HLA-B27 , 2004 .

[122]  Jürgen Braun,et al.  Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis , 2003, Rheumatology International.

[123]  J. Fernández-Morera,et al.  Association of ankylosing spondylitis with HLA-B*1403 in a West African population. , 2002, Arthritis and rheumatism.

[124]  J. Braun,et al.  Ankylosing spondylitis--cardiac manifestations. , 2002, Clinical and experimental rheumatology.

[125]  A. Marina,et al.  Differential Association of HLA-B*2705 and B*2709 to Ankylosing Spondylitis Correlates with Limited Peptide Subsets but Not with Altered Cell Surface Stability* , 2002, The Journal of Biological Chemistry.

[126]  M. Minami,et al.  Spondyloarthropathies in Japan: nationwide questionnaire survey performed by the Japan Ankylosing Spondylitis Society. , 2001, The Journal of rheumatology.

[127]  A Calin,et al.  Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis , 2000, Annals of the rheumatic diseases.

[128]  O. Oniankitan,et al.  Spondyloarthropathies in sub-Saharan Africa , 2000, Current Opinion in Rheumatology.

[129]  P Wordsworth,et al.  Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. , 1997, Arthritis and rheumatism.

[130]  R. Hammer,et al.  Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. , 1996, The Journal of clinical investigation.

[131]  K. Tokunaga,et al.  Association of HLA-B39 with HLA-B27-negative ankylosing spondylitis and pauciarticular juvenile rheumatoid arthritis in Japanese patients. Evidence for a role of the peptide-anchoring B pocket. , 1995, Arthritis and rheumatism.

[132]  M. Khan,et al.  HLA-B27 and its subtypes in world populations. , 1995, Current opinion in rheumatology.

[133]  R. Hammer,et al.  The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats , 1994, The Journal of experimental medicine.

[134]  J. Villadangos,et al.  Changes in the repertoire of peptides bound to HLA-B27 subtypes and to site-specific mutants inside and outside pocket B , 1993, The Journal of experimental medicine.

[135]  G. Koki,et al.  Antigen and haplotype frequencies at three human leucocyte antigen loci (HLA-A, -B, -C) in the Pawaia of Papua New Guinea. , 1988, American journal of physical anthropology.

[136]  C. E. Reeve,et al.  HL-A 27 and ankylosing spondylitis in B.C. Indians. , 1984, The Journal of rheumatology.

[137]  A. Cats,et al.  Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. , 1984, Arthritis and rheumatism.

[138]  B. M. Jongh,et al.  The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. , 1984, Arthritis and rheumatism.

[139]  W. Braun,et al.  A subgroup of ankylosing spondylitis associated with HLA-B7 in American blacks. , 1978, Arthritis and rheumatism.

[140]  W. Braun,et al.  Comparison of clinical features in HLA-B27 positive and negative patients with ankylosing spondylitis. , 1977, Arthritis and rheumatism.

[141]  K. Aho,et al.  HL-A 27 in reactive arthritis. A study of Yersinia arthritis and Reiter's disease. , 1974, Arthritis and rheumatism.

[142]  D. Brewerton,et al.  HL-A 27 and arthropathies associated with ulcerative colitis and psoriasis. , 1974, Lancet.

[143]  D. A. Brewerton,et al.  Acute anterior uveitis and HL-A 27. , 1973, Lancet.

[144]  R D Sturrock,et al.  Ankylosing spondylitis and HL-A 27. , 1973, Lancet.

[145]  P I Terasaki,et al.  High association of an HL-A antigen, W27, with ankylosing spondylitis. , 1973, The New England journal of medicine.

[146]  M. Brown,et al.  Genetics of ankylosing spondylitis. , 2014, Molecular immunology.

[147]  X. Juanola,et al.  Comparison of 2 referral strategies for the diagnosis of axial spondyloarthritis in Spain. The RADAR study. , 2013, Reumatologia clinica.

[148]  E. Ren,et al.  Possible protective role of HLA-B*2706 for ankylosing spondylitis. , 1997, Tissue antigens.

[149]  S. Erdes,et al.  [The epidemiology of spondyloarthropathies among the native inhabitants of Chukotka. 2. The prevalence of HLA-B27 in the population and among spondyloarthropathy patients]. , 1994, Terapevticheskii arkhiv.

[150]  P. Parham,et al.  Guilt by association: HLA-B27 and ankylosing spondylitis. , 1990, Immunology today.