Does Diversity Affect User Satisfaction in Image Search

Diversity has been taken into consideration by existing Web image search engines in ranking search results. However, there is no thorough investigation of how diversity affects user satisfaction in image search. In this article, we address the following questions: (1) How do different factors, such as content and visual presentations, affect users’ perception of diversity? (2) How does search result diversity affect user satisfaction with different search intents? To answer those questions, we conduct a set of laboratory user studies to collect users’ perceived diversity annotations and search satisfaction. We find that the existence of nearly duplicated image results has the largest impact on users’ perceived diversity, followed by the similarity in content and visual presentations. Besides these findings, we also investigate the relationship between diversity and satisfaction in image search. Specifically, we find that users’ preference for diversity varies across different search intents. When users want to collect information or save images for further usage (the Locate search tasks), more diversified result lists lead to higher satisfaction levels. The insights may help commercial image search engines to design better result ranking strategies and evaluation metrics.

[1]  Ahmed Hassan Awadallah,et al.  Beyond DCG: user behavior as a predictor of a successful search , 2010, WSDM '10.

[2]  C. R. Snyder,et al.  Oxford Handbook of Positive Psychology , 2009 .

[3]  B. Tatler,et al.  The prominence of behavioural biases in eye guidance , 2009 .

[4]  Jingrui He,et al.  Diversified ranking on large graphs: an optimization viewpoint , 2011, KDD.

[5]  Hsiao-Tieh Pu,et al.  A comparative analysis of web image and textual queries , 2005, Online Inf. Rev..

[6]  Filip Radlinski,et al.  Redundancy, diversity and interdependent document relevance , 2009, SIGF.

[7]  Craig MacDonald,et al.  Selectively diversifying web search results , 2010, CIKM.

[8]  Mathias Lux,et al.  A classification scheme for user intentions in image search , 2010, CHI EA '10.

[9]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[10]  Meng Wang,et al.  Image Re-Ranking Based on Topic Diversity , 2017, IEEE Transactions on Image Processing.

[11]  Sreenivas Gollapudi,et al.  Bypass rates: reducing query abandonment using negative inferences , 2008, KDD.

[12]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[13]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Rossano Schifanella,et al.  Leveraging User Interaction Signals for Web Image Search , 2016, SIGIR.

[15]  Craig MacDonald,et al.  Intent-aware search result diversification , 2011, SIGIR.

[16]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[17]  Jonathon S. Hare,et al.  Explicit diversification of image search , 2013, ICMR '13.

[18]  Mark Sanderson,et al.  Diversity in Photo Retrieval: Overview of the ImageCLEFPhoto Task 2009 , 2009, CLEF.

[19]  Samy Bengio,et al.  Large Scale Online Learning of Image Similarity Through Ranking , 2009, J. Mach. Learn. Res..

[20]  Rossano Schifanella,et al.  A Large-Scale Study of User Image Search Behavior on the Web , 2015, CHI.

[21]  Bin Wang,et al.  Large-Scale Duplicate Detection for Web Image Search , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[22]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[23]  Jian Zhang,et al.  Graph-based clustering and ranking for diversified image search , 2014, Multimedia Systems.

[24]  Robin Jeffries,et al.  Task Behaviors During Web Search: The Difficulty of Assigning Labels , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[25]  Yiqun Liu,et al.  Different Users, Different Opinions: Predicting Search Satisfaction with Mouse Movement Information , 2015, SIGIR.

[26]  Tsuhan Chen,et al.  Image retrieval with geometry-preserving visual phrases , 2011, CVPR 2011.

[27]  C. V. Jawahar,et al.  Diverse Yet Efficient Retrieval using Locality Sensitive Hashing , 2016, ICMR.

[28]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[29]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .

[30]  Yiqun Liu,et al.  Why People Search for Images using Web Search Engines , 2017, WSDM.

[31]  R. Oliver Satisfaction: A Behavioral Perspective On The Consumer , 1996 .

[32]  Cordelia Schmid,et al.  TagProp: Discriminative metric learning in nearest neighbor models for image auto-annotation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[33]  Amanda Spink,et al.  Real life information retrieval: a study of user queries on the Web , 1998, SIGF.

[34]  Fan Zhang,et al.  How Well do Offline and Online Evaluation Metrics Measure User Satisfaction in Web Image Search? , 2018, SIGIR.

[35]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[36]  Ryen W. White,et al.  Comparing client and server dwell time estimates for click-level satisfaction prediction , 2014, SIGIR.

[37]  Desney S. Tan,et al.  Designing Novel Image Search Interfaces by Understanding Unique Characteristics and Usage , 2009, INTERACT.

[38]  Hermann Ney,et al.  Jointly optimising relevance and diversity in image retrieval , 2009, CIVR '09.

[39]  Yiannis Kompatsiaris,et al.  Improving Diversity in Image Search via Supervised Relevance Scoring , 2015, ICMR.

[40]  Meng Wang,et al.  Investigating Examination Behavior of Image Search Users , 2017, SIGIR.

[41]  Louise T. Su Evaluation Measures for Interactive Information Retrieval , 1992, Inf. Process. Manag..

[42]  Ximena Olivares,et al.  Visual diversification of image search results , 2009, WWW '09.

[43]  Gang Wang,et al.  Learning image similarity from Flickr groups using Stochastic Intersection Kernel MAchines , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[44]  Nick Craswell,et al.  Beyond clicks: query reformulation as a predictor of search satisfaction , 2013, CIKM.

[45]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[46]  Filip Radlinski,et al.  Improving personalized web search using result diversification , 2006, SIGIR.

[47]  Eugene Agichtein,et al.  Predicting web search success with fine-grained interaction data , 2012, CIKM.

[48]  Tevfik Aytekin,et al.  Clustering-based diversity improvement in top-N recommendation , 2013, Journal of Intelligent Information Systems.

[49]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[50]  Diane Kelly,et al.  Methods for Evaluating Interactive Information Retrieval Systems with Users , 2009, Found. Trends Inf. Retr..

[51]  Yang Song,et al.  Modeling action-level satisfaction for search task satisfaction prediction , 2014, SIGIR.

[52]  T. Foulsham,et al.  Quarterly Journal of Experimental Psychology: in press Visual saliency and semantic incongruency influence eye movements when , 2022 .

[53]  Bernard J. Jansen Searching for digital images on the web , 2008, J. Documentation.

[54]  Chih-Hung Hsieh,et al.  Towards better measurement of attention and satisfaction in mobile search , 2014, SIGIR.

[55]  Yiqun Liu,et al.  Meta-evaluation of Online and Offline Web Search Evaluation Metrics , 2017, SIGIR.

[56]  Steve Fox,et al.  Evaluating implicit measures to improve web search , 2005, TOIS.

[57]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[58]  Yiqun Liu,et al.  A Study of User Image Search Behavior Based on Log Analysis , 2017, CCIR.

[59]  Madian Khabsa,et al.  User Interaction Sequences for Search Satisfaction Prediction , 2017, SIGIR.