Measurement and remote sensing of LAI in Rocky Mountain montane ecosystems

Nous avons estime l'indice de surface foliaire (LAI) pour le Glacier National Park situe dans le Montana, aux Etats-Unis, en utilisant diverses methodes de mesure de LAI sur le terrain et en etablissant une correlation entre ces resultats et les donnees TM du capteur Landsat. Les valeurs de LAI au sol ont ete estimees au moyen d'equations allometriques reliant LAI au bois d'aubier et par des mesures avec des instruments optiques, incluant un LAI-2000 et un ceptometre Decagon. Comme les estimations de LAI par les methodes optiques sont affectees par un auto-estompage non aleatoire, les valeurs de LAI calculees avec les equations allometriques ont ete comparees aux valeurs obtenues par les mesures optiques dans le but de corriger ces dernieres pour des types de vegetation et de structure de couvert similaires. Des modeles de regression par moindres carres ont ete elabores en regroupant les valeurs de LAI mesurees au sol avec les equations allometriques et les instruments optiques apres correction et a partir d'indices de vegetation provenant des donnees TM de Landsat. Pour des classes specifiques de pente, d'exposition et d'elevation, on a utilise une valeur moyenne de LAI et des indices obtenus par satellite etant donne que les estimations ponctuelles etaient generalement imprecises. L'indice normalise differentiel de vegetation (NDVI) et un ratio infra-rouge moyen simple corrige (SR c ) etaient les valeurs qui concordaient le mieux avec les donnees de LAI prises sur le terrain. Nous avons applique ces deux modeles aux indices TM et evalue les estimations de LAI avec des valeurs independantes mesurees sur le terrain. De plus, nous avons etudie l'influence de la resolution spatiale sur les valeurs de LAI obtenues par satellite en faisant la moyenne des donnees TM sur des cellules (pixels) de 250 x 250 m. Les resultats ont demontre que NDVI offre la meilleure estimation de LAI et que la precision decroit avec l'accroissement de la taille des pixels. SR c surestime la valeur de LAI, principalement a cause de la difficulte d'obtenir une echelle de reflectance appropriee pour la correction dans l'infra-rouge moyen a appliquer a l'indice pour un territoire a plus grande echelle tel que celui etudie ici. Cependant, la correction apportee aux indices TM dans l'infra-rouge moyen constitue un bon indicateur du couvert en sous-etage.

[1]  Richard H. Waring,et al.  Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old‐growth Douglas‐fir , 1978 .

[2]  Alain Royer,et al.  Measuring Leaf Area Index with the Li‐Cor LAI‐2000 in Pine Stands , 1994 .

[3]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[4]  Estimating leaf-area index of wheat with LANDSAT data , 1979 .

[5]  W. Schlesinger,et al.  Biomass Allocation of Montane and Desert Ponderosa Pine: An Analog for Response to Climate Change , 1994 .

[6]  J. Cihlar,et al.  AVHRR bidirectional reflectance effects and compositing , 1994 .

[7]  Stanley R. Herwitz,et al.  Thematic mapper detection of changes in the leaf area of closed canopy pine plantations in Central Massachusetts , 1989 .

[8]  K. O’Hara,et al.  Sapwood-leaf area prediction equations for multi-aged ponderosa pine stands in western Montana and central Oregon , 1995 .

[9]  B. Markham,et al.  Spectral characterization of the LANDSAT Thematic Mapper sensors , 1985 .

[10]  S. Running,et al.  The seasonality of AVHRR data of temperate coniferous forests - Relationship with leaf area index , 1990 .

[11]  F. Smith,et al.  Influence of canopy architecture on light penetration in lodgepole pine (Pinus contorta var. latifolia) forests , 1993 .

[12]  S. Running,et al.  Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed leaf area index estimates , 1993 .

[13]  P. Reich,et al.  Causes and Consequences of Variation in Conifer Leaf Life-Span , 1995 .

[14]  E. Raymond Hunt,et al.  Airborne remote sensing of canopy water thickness scaled from leaf spectrometer data , 1991 .

[15]  William J. Ripple,et al.  Analysis of conifer forest regeneration using Landsat Thematic Mapper data , 1993 .

[16]  R. Hungerford Estimation of foliage area in dense Montana lodgepole pine stands , 1987 .

[17]  P. Jarvis,et al.  Conducting sapwood area, foliage area, and permeability in mature trees of Piceasitchensis and Pinuscontorta , 1984 .

[18]  J. Colwell Vegetation canopy reflectance , 1974 .

[19]  S. Running,et al.  Numerical Terradynamic Simulation Group 12-1988 Rapid Estimation of Coniferous Forest Leaf Area Index Using a Portable Integrating Radiometer , 2018 .

[20]  J. Leverenz Shade-shoot structure, photosynthetic performance in the field, and photosynthetic capacity of evergreen conifers. , 1996, Tree physiology.

[21]  C. E. Leprieur,et al.  Influence of topography on forest reflectance using Landsat Thematic Mapper and Digital Terrain Data , 1988 .

[22]  J. Michaelsen,et al.  Estimating grassland biomass and leaf area index using ground and satellite data , 1994 .

[23]  S. Gower,et al.  Allometric relations of deciduous (Larixoccidentalis) and evergreen conifers (Pinuscontorta and Pseudotsugamenziesii) of the Cascade Mountains in central Washington , 1987 .

[24]  Steven W. Running,et al.  Testing scale dependent assumptions in regional ecosystem simulations , 1994 .

[25]  M. Kaufmann,et al.  The relationship of leaf area and foliage biomass to sapwood conducting area in four subalpine forest tree species , 1981 .

[26]  Alan K. Knapp,et al.  Physiological Interactions Along Resource Gradients in a Tallgrass Prairie , 1991 .

[27]  J. Marshall,et al.  Leaf area – sapwood area relationships in adjacent young Douglas-fir stands with different early growth rates , 1987 .

[28]  M. Huston,et al.  A comparison of direct and indirect methods for estimating forest canopy leaf area , 1991 .

[29]  S. T. Gower,et al.  Rapid Estimation of Leaf Area Index in Conifer and Broad-Leaf Plantations , 1991 .

[30]  J. Douglas,et al.  Value of 1 , 1982 .

[31]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[32]  Don M. Miller,et al.  Reducing Transformation Bias in Curve Fitting , 1984 .

[33]  R. Dewar The Correlation between Plant Growth and Intercepted Radiation: An Interpretation in Terms of Optimal Plant Nitrogen Content , 1996 .

[34]  J. M. Chen,et al.  Effects of clumping on estimates of stand leaf area index using the LI-COR LAI-2000 , 1993 .

[35]  P. Stenberg,et al.  Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. , 1994, Tree physiology.

[36]  J. Marshall,et al.  Comparison of Methods of Estimating Leaf‐Area Index In Old‐Growth Douglas‐Fir , 1986 .

[37]  H. Margolis,et al.  Relation between the permeability and the anatomy of jack pine sapwood with stand development , 1989 .

[38]  S. Ekstrand,et al.  Landsat TM-based forest damage assessment : correction for topographic effects , 1996 .

[39]  Jb Miller,et al.  A formula for average foliage density , 1967 .

[40]  P. Stenberg,et al.  Response of LAI-2000 estimates to changes in plant surface area index in a Scots pine stand. , 1996, Tree physiology.

[41]  H. Brix,et al.  Thinning and nitrogen fertilization effects on sapwood development and relationships of foliage quantity to sapwood area and basal area in Douglas-fir , 1983 .

[42]  C. Wessman,et al.  Canopy transmittance models for estimating forest leaf area index , 1993 .

[43]  S. T. Gower,et al.  A comparison of optical and direct methods for estimating foliage surface area index in forests , 1994 .

[44]  Steven W. Running,et al.  Remote sensing of temperate coniferous forest leaf area index The influence of canopy closure, understory vegetation and background reflectance , 1990 .

[45]  J. Welles Some indirect methods of estimating canopy structure , 1990 .

[46]  Richard H. Waring,et al.  Application of the pipe model theory to predict canopy leaf area. , 1982 .

[47]  R. J. Brown,et al.  Review Article Radiometric correction of visible and infrared remote sensing data at the Canada Centre for Remote Sensing , 1987 .

[48]  F. Berninger,et al.  Foliage area-sapwood area relationships of Scots pine (Pinus sylvestris) trees in different climates , 1994 .

[49]  James K. Brown,et al.  Comparison of Tree Biomass Estimators—DBH and Sapwood Area , 1978 .

[50]  J. N. Long,et al.  Variation in Sapwood Area-Leaf Area Relations Within Two Stands of Lodgepole Pine , 1986 .

[51]  Jennifer L. Dungan,et al.  Seasonal LAI in slash pine estimated with landsat TM , 1992 .

[52]  G. Campbell Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution , 1986 .

[53]  G. Weetman,et al.  Leaf area – sapwood cross-sectional area relationships in repressed stands of lodgepole pine , 1987 .