On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects
暂无分享,去创建一个
J. C. Simo | D. Fox | M. S. Rifai | J. Simo
[1] J. C. Simo,et al. On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .
[2] J. C. Simo,et al. On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .
[3] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[4] Michel Fortin,et al. Numerical approximation of Mindlin-Reissner plates , 1986 .
[5] K. Park,et al. A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .
[6] Ted Belytschko,et al. Resultant-stress degenerated-shell element , 1986 .
[7] J. C. Simo,et al. On the Variational Foundations of Assumed Strain Methods , 1986 .
[8] Wing Kam Liu,et al. Stress projection for membrane and shear locking in shell finite elements , 1985 .
[9] R. L. Harder,et al. A proposed standard set of problems to test finite element accuracy , 1985 .
[10] T. Pian,et al. Rational approach for assumed stress finite elements , 1984 .
[11] E. Hinton,et al. A nine node Lagrangian Mindlin plate element with enhanced shear interpolation , 1984 .
[12] T. Belytschko,et al. Shear and membrane locking in curved C0 elements , 1983 .
[13] J. M. Kennedy,et al. Hourglass control in linear and nonlinear problems , 1983 .
[14] T. Belytschko,et al. A stabilization procedure for the quadrilateral plate element with one-point quadrature , 1983 .
[15] David W. Murray,et al. Nonlinear Finite Element Analysis of Steel Frames , 1983 .
[16] Richard H. Macneal,et al. Derivation of element stiffness matrices by assumed strain distributions , 1982 .
[17] T. Belytschko,et al. Membrane Locking and Reduced Integration for Curved Elements , 1982 .
[18] T. Hughes,et al. Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .
[19] Thomas J. R. Hughes,et al. Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .
[20] T. Hughes. Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .
[21] H. Parisch,et al. A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .
[22] Richard H. Macneal,et al. A simple quadrilateral shell element , 1978 .
[23] Medhat A. Haroun,et al. Reduced and selective integration techniques in the finite element analysis of plates , 1978 .
[24] O. C. Zienkiewicz,et al. Reduced integration technique in general analysis of plates and shells , 1971 .
[25] K. S. Lo,et al. Computer analysis in cylindrical shells , 1964 .
[26] K. Bathe,et al. A Simplified Analysis of Two Plate Bending Elements — the MITC4 and MITC9 Elements , 1987 .
[27] O. C. Zienkiewicz,et al. The patch test—a condition for assessing FEM convergence , 1986 .
[28] O. C. Zienkiewicz,et al. THE PATCH TEST: A CONDITION FOR ASSESSING FINITE ELEMENT CONVERGENCE , 1986 .
[29] K. Bathe,et al. On the convergence of a four - node plate bending element based on Mindlin - Reissner plate theory a , 1985 .
[30] K. Bathe,et al. A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .
[31] Han-Lin Chen,et al. Approximation of complex harmonic functions by complex harmonic splines , 1984 .
[32] H. Saunders,et al. Finite element procedures in engineering analysis , 1982 .