On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects

[1]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[2]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[3]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[4]  Michel Fortin,et al.  Numerical approximation of Mindlin-Reissner plates , 1986 .

[5]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[6]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[7]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[8]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[9]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[10]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[11]  E. Hinton,et al.  A nine node Lagrangian Mindlin plate element with enhanced shear interpolation , 1984 .

[12]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[13]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[14]  T. Belytschko,et al.  A stabilization procedure for the quadrilateral plate element with one-point quadrature , 1983 .

[15]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[16]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[17]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[18]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[19]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[20]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[21]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[22]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[23]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[24]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[25]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[26]  K. Bathe,et al.  A Simplified Analysis of Two Plate Bending Elements — the MITC4 and MITC9 Elements , 1987 .

[27]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[28]  O. C. Zienkiewicz,et al.  THE PATCH TEST: A CONDITION FOR ASSESSING FINITE ELEMENT CONVERGENCE , 1986 .

[29]  K. Bathe,et al.  On the convergence of a four - node plate bending element based on Mindlin - Reissner plate theory a , 1985 .

[30]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[31]  Han-Lin Chen,et al.  Approximation of complex harmonic functions by complex harmonic splines , 1984 .

[32]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .