Soft imprinted Ag nanowire hybrid electrodes on silicon heterojunction solar cells

[1]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[2]  V. Radmilović,et al.  Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes , 2015 .

[3]  A. Polman,et al.  Large-area soft-imprinted nanowire networks as light trapping transparent conductors , 2015, Scientific Reports.

[4]  Albert Polman,et al.  Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating. , 2015, Nano letters.

[5]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[6]  I. Park,et al.  Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization. , 2014, Small.

[7]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[8]  Allen T Bellew,et al.  Effective electrode length enhances electrical activation of nanowire networks: experiment and simulation. , 2014, ACS nano.

[9]  N. V. van Hulst,et al.  Transparent metallic fractal electrodes for semiconductor devices. , 2014, Nano letters.

[10]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[11]  J. D. de Mello,et al.  Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. , 2014, ACS nano.

[12]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[13]  Yi Cui,et al.  Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires , 2013, Nature Communications.

[14]  Yi Cui,et al.  A transparent electrode based on a metal nanotrough network. , 2013, Nature nanotechnology.

[15]  S. Glunz,et al.  Reduction of Absorption Losses and Efficiency Gains by Investigating Amorphous/Cristalline SHJ Rear Emitter Solar Cells , 2012 .

[16]  C. Ballif,et al.  Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering , 2012 .

[17]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[18]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[19]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[20]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[21]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[22]  A. Polman,et al.  Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography , 2011, Nanotechnology.

[23]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[24]  Yi Cui,et al.  Electrospun metal nanofiber webs as high-performance transparent electrode. , 2010, Nano letters.

[25]  M. Verschuuren,et al.  Substrate conformal imprint lithography for nanophotonics , 2010 .

[26]  Hyungsoon Im,et al.  Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. , 2010, ACS nano.

[27]  Chongwu Zhou,et al.  The race to replace tin-doped indium oxide: which material will win? , 2010, ACS nano.

[28]  Thomas M. Higgins,et al.  Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. , 2009, ACS nano.

[29]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[30]  George C Schatz,et al.  Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[31]  L. Jay Guo,et al.  Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes , 2008 .

[32]  L. Jay Guo,et al.  Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light‐Emitting Diodes , 2007 .

[33]  M. Abbott,et al.  Investigation of edge recombination effects in silicon solar cell structures using photoluminescence , 2006 .

[34]  M. Yacamán,et al.  Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles , 2005 .

[35]  T. Minami Transparent conducting oxide semiconductors for transparent electrodes , 2005 .

[36]  C. Granqvist,et al.  Transparent and conducting ITO films: new developments and applications , 2002 .

[37]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[38]  Peer Löbmann,et al.  Transparent Conducting Oxides , 2000, MRS Bulletin.

[39]  A. Burgers How to Design Optimal Metallization Patterns for Solar Cells , 1999 .

[40]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[41]  R. M. Swanson,et al.  A 720 mV open circuit voltage SiOx:c‐Si:SiOx double heterostructure solar cell , 1985 .

[42]  M. Kurik Urbach Rule , 1971, November 16.

[43]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[44]  A. Aberle,et al.  Novel Hybrid Electrode Using Transparent Conductive Oxide and Silver Nanoparticle Mesh for Silicon Solar Cell Applications , 2014 .