LightLDA: Big Topic Models on Modest Computer Clusters
暂无分享,去创建一个
Tie-Yan Liu | Wei-Ying Ma | Eric P. Xing | Jinhui Yuan | Xun Zheng | Fei Gao | Wei Dai | Qirong Ho | Jinliang Wei | E. Xing | Qirong Ho | Wei Dai | Jinliang Wei | Xun Zheng | Jinhui Yuan | Fei Gao | Tie-Yan Liu | Wei-Ying Ma
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] Alastair J. Walker,et al. An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.
[4] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[5] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[6] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[7] G. Marsaglia,et al. Fast Generation of Discrete Random Variables , 2004 .
[8] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[9] Eric P. Xing,et al. mStruct: a new admixture model for inference of population structure in light of both genetic admixing and allele mutations , 2008, ICML '08.
[10] Edoardo M. Airoldi,et al. Mixed Membership Stochastic Blockmodels , 2007, NIPS.
[11] Eric P. Xing,et al. MedLDA: maximum margin supervised topic models for regression and classification , 2009, ICML '09.
[12] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[13] Max Welling,et al. Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..
[14] E. Xing,et al. mStruct: Inference of Population Structure in Light of Both Genetic Admixing and Allele Mutations , 2009, Genetics.
[15] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[16] Jinyang Li,et al. Piccolo: Building Fast, Distributed Programs with Partitioned Tables , 2010, OSDI.
[17] Zhiyuan Liu,et al. PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.
[18] Brucek Khailany,et al. CudaDMA: Optimizing GPU memory bandwidth via warp specialization , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
[19] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[20] Alexander J. Smola,et al. Scalable inference in latent variable models , 2012, WSDM '12.
[21] Seunghak Lee,et al. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server , 2013, NIPS.
[22] Eric P. Xing,et al. A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks , 2013, NIPS.
[23] Alexander J. Smola,et al. Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.
[24] Eric P. Xing,et al. Model-Parallel Inference for Big Topic Models , 2014, ArXiv.
[25] Yang Gao,et al. Towards Topic Modeling for Big Data , 2014, ArXiv.
[26] Seunghak Lee,et al. On Model Parallelization and Scheduling Strategies for Distributed Machine Learning , 2014, NIPS.
[27] Alexander J. Smola,et al. Reducing the sampling complexity of topic models , 2014, KDD.
[28] Peacock: Learning Long-Tail Topic Features for Industrial Applications , 2015, ACM Trans. Intell. Syst. Technol..
[29] Eric P. Xing,et al. High-Performance Distributed ML at Scale through Parameter Server Consistency Models , 2014, AAAI.