Traveling wave electrode simulation for integrated lithium niobite electro-optic modulators

With the improvement of information transmission rate and the progress of semiconductor process technology, Lithium Niobite on insulator (LNOI) electro-optic modulators have received more and more attention. The LNOI modulators have high linearity and extinction ratio that silicon-based modulators do not reach, so it can be used to support high-speed and long-distance optical communication. In the LNOI modulator, the traveling wave electrodes with coplanar waveguides (CPWs) structure are used. We mainly consider the impedance matching of microwave transmission, the velocity and loss of microwave and optical wave to obtain high-speed modulation devices. By means of Simulation, we get the optical waveguide single-mode condition and analyze the characteristic impedance, microwave effective refractive index and 3dB bandwidth of the electrode under that condition. The electrode with bandwidth of 70GHz and 𝑆11 about -25dB is obtained.

[1]  L. Liu,et al.  High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond , 2018, Nature Photonics.

[2]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[3]  H. Rong,et al.  A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning , 2019, Journal of Lightwave Technology.

[4]  Yang He,et al.  Lithium niobate photonic-crystal electro-optic modulator , 2020, Nature Communications.

[5]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[6]  K. Lau Gain switching of semiconductor injection lasers , 1988 .

[7]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[8]  I. Kaminow,et al.  Metal‐diffused optical waveguides in LiNbO3 , 1974 .

[9]  E. Yamada,et al.  Over 67 GHz Bandwidth and 1.5 V Vπ InP-Based Optical IQ Modulator With n-i-p-n Heterostructure , 2017, Journal of Lightwave Technology.

[10]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[11]  Mark Lee,et al.  Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz , 2001 .

[12]  Shahriar Mirabbasi,et al.  Silicon-Photonics Microring Links for Datacenters—Challenges and Opportunities , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[14]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[15]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[16]  Ya Cheng,et al.  Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness , 2018, Nanomaterials.

[17]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[18]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Dennis W Prather,et al.  110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. , 2016, Optics express.