Materials and Mechanics for Stretchable Electronics

Recent advances in mechanics and materials provide routes to integrated circuits that can offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent, and deformed into arbitrary shapes. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we review these strategies and describe applications of them in systems ranging from electronic eyeball cameras to deformable light-emitting displays. We conclude with some perspectives on routes to commercialization, new device opportunities, and remaining challenges for research.

[1]  A. Yassar,et al.  All-Polymer Field-Effect Transistor Realized by Printing Techniques , 1994, Science.

[2]  Zhenan Bao,et al.  High-performance plastic transistors fabricated by printing techniques , 1997 .

[3]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[4]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[6]  Luke P. Lee,et al.  Microfabricated suspensions for electrical connections on the tunable elastomer membrane , 2004 .

[7]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[8]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[9]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[11]  Kevin Huang,et al.  Stretchable silicon sensor networks for structural health monitoring , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  J. Rogers,et al.  Finite deformation mechanics in buckled thin films on compliant supports , 2007, Proceedings of the National Academy of Sciences.

[13]  John A Rogers,et al.  Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. , 2007, Chemical reviews.

[14]  O. Urakawa,et al.  Small - , 2007 .

[15]  Yonggang Huang,et al.  Biaxially stretchable "wavy" silicon nanomembranes. , 2007, Nano letters.

[16]  Stephen R. Forrest,et al.  Introduction: Organic Electronics and Optoelectronics , 2007 .

[17]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[18]  George M. Whitesides,et al.  Microsolidics: Fabrication of Three‐Dimensional Metallic Microstructures in Poly(dimethylsiloxane) , 2007 .

[19]  J. Vanfleteren,et al.  Design and Manufacturing of Stretchable High-Frequency Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[20]  Yang Wang,et al.  Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. , 2008, Nano letters.

[21]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[22]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[23]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[24]  John A. Rogers,et al.  Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates , 2008 .

[25]  Luka Pocivavsek,et al.  Beyond Wrinkles: Stress and Fold Localization in Thin Elastic Membranes , 2008 .

[26]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[27]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[28]  P. Peumans,et al.  Curving monolithic silicon for nonplanar focal plane array applications , 2008 .

[29]  Robert Puers,et al.  Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications , 2009 .

[30]  Arezki Boudaoud,et al.  The macroscopic delamination of thin films from elastic substrates , 2009, Proceedings of the National Academy of Sciences.

[31]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[32]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[33]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[34]  Sigurd Wagner,et al.  Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. , 2009, Journal of neurotrauma.

[35]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  Qibing Pei,et al.  Highly stretchable, conductive, and transparent nanotube thin films , 2009 .

[38]  Heung Cho Ko,et al.  Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. , 2009, Small.

[39]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[40]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[41]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[42]  Viktor Malyarchuk,et al.  Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts , 2010 .

[43]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[44]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.