Two-layered dissolving microneedles formulated with intermediate-acting insulin.

[1]  Majella E Lane,et al.  Skin penetration enhancers. , 2013, International journal of pharmaceutics.

[2]  Yukako Ito,et al.  Transdermal insulin application system with dissolving microneedles. , 2012, Diabetes technology & therapeutics.

[3]  F. Kennedy Recent Developments in Insulin Delivery Techniques , 1991, Drugs.

[4]  M. Garland,et al.  Laser-Engineered Dissolving Microneedle Arrays for Transdermal Macromolecular Drug Delivery , 2011, Pharmaceutical Research.

[5]  H. Junginger,et al.  Nasal and rectal delivery of insulin with chitosan and N-trimethyl chitosan chloride , 2010, Drug delivery.

[6]  Yukako Ito,et al.  Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. , 2010, Diabetes technology & therapeutics.

[7]  T. Kissel,et al.  Nasal absorption and local tissue reaction of insulin nanocomplexes of trimethyl chitosan derivatives in rats , 2010 .

[8]  Yukako Ito,et al.  Self-dissolving micropile array tips for percutaneous administration of insulin , 2010, Journal of materials science. Materials in medicine.

[9]  A. Alpár,et al.  Chondroitin sulfate proteoglycan-based extracellular matrix in chicken (Gallus domesticus) brain , 2009, Brain Research.

[10]  M. Prausnitz,et al.  Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. , 2009, Diabetes technology & therapeutics.

[11]  M. Prausnitz,et al.  Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge , 2009, Proceedings of the National Academy of Sciences.

[12]  Yukako Ito,et al.  Self-dissolving micropiles for the percutaneous absorption of recombinant human growth hormone in rats. , 2008, Biological & pharmaceutical bulletin.

[13]  K. Takada Microfabrication-derived DDS: From batch to individual production. , 2008, Drug discoveries & therapeutics.

[14]  Yukako Ito,et al.  Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs. , 2008, Chemical & pharmaceutical bulletin.

[15]  Göran Stemme,et al.  Painless Drug Delivery Through Microneedle-Based Transdermal Patches Featuring Active Infusion , 2008, IEEE Transactions on Biomedical Engineering.

[16]  Mark R Prausnitz,et al.  Microneedles permit transdermal delivery of a skin-impermeant medication to humans , 2008, Proceedings of the National Academy of Sciences.

[17]  Yukako Ito,et al.  Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats. , 2008, International journal of pharmaceutics.

[18]  Yukako Ito,et al.  Percutaneous absorption of interferon-α by self-dissolving micropiles , 2008 .

[19]  P. Roach,et al.  New Insulin Analogues and Routes of Delivery , 2008, Clinical pharmacokinetics.

[20]  K. Peh,et al.  Development and Validation of an HPLC–UV Method for the Determination of Insulin in Rat Plasma: Application to Pharmacokinetic Study , 2007 .

[21]  S. Houng,et al.  Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[22]  J. Birchall Stratum Corneum Bypassed or Removed , 2006 .

[23]  Kanji Takada,et al.  Feasibility of microneedles for percutaneous absorption of insulin. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[24]  J. Yoshimitsu,et al.  Self-dissolving microneedles for the percutaneous absorption of EPO in mice , 2006, Journal of drug targeting.

[25]  Li-Fang Wang,et al.  Oral sustained delivery of diclofenac sodium using calcium chondroitin sulfate matrix , 2005, Journal of biomaterials science. Polymer edition.

[26]  N. Kollias,et al.  Transdermal drug delivery with a pressure wave. , 2004, Advanced drug delivery reviews.

[27]  G. Cevc Lipid vesicles and other colloids as drug carriers on the skin. , 2004, Advanced drug delivery reviews.

[28]  S. Mitragotri,et al.  Low-frequency sonophoresis: a review. , 2004, Advanced drug delivery reviews.

[29]  Mark R Prausnitz,et al.  Microneedles for transdermal drug delivery. , 2004, Advanced drug delivery reviews.

[30]  Véronique Préat,et al.  Skin electroporation for transdermal and topical delivery. , 2004, Advanced drug delivery reviews.

[31]  Shuhei Yamada,et al.  Chondroitin sulfate of appican, the proteoglycan form of amyloid precursor protein, produced by C6 glioma cells interacts with heparin‐binding neuroregulatory factors , 2004, FEBS letters.

[32]  J. Patton,et al.  Clinical Pharmacokinetics and Pharmacodynamics of Inhaled Insulin , 2004, Clinical pharmacokinetics.

[33]  J. Matriano,et al.  Macroflux® Microprojection Array Patch Technology: A New and Efficient Approach for Intracutaneous Immunization , 2004, Pharmaceutical Research.

[34]  J. Rosenstock,et al.  Inhaled insulin: a novel route for insulin delivery , 2002, Expert opinion on investigational drugs.

[35]  M. Wilson,et al.  Chondroitin sulfate proteoglycan expression pattern in hippocampal development: Potential regulation of axon tract formation , 2000, The Journal of comparative neurology.

[36]  E. Ziv,et al.  Pharmacokinetic Considerations of New Insulin Formulations and Routes of Administration , 1997, Clinical pharmacokinetics.

[37]  A. Sintov,et al.  Cross-linked chondroitin sulphate: characterization for drug delivery purposes. , 1995, Biomaterials.

[38]  M. Schachner,et al.  Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties , 1994, The Journal of cell biology.

[39]  H. Dorchy,et al.  Intermediate and long-acting insulin preparations without protamine sulphate are complement activators in vitro. , 1992, Diabete & metabolisme.