A unified approach to statistical design centering of integrated circuits with correlated parameters

This paper presents a general method for statistical design centering of integrated circuits with correlated parameters. It unifies worst-case design, nominal design and tolerance design in a single framework by selecting appropriate norms to measure the distances from the nominal values. The method uses an advanced first-order second moment technique as an alternative to the simplicial algorithm. Yield estimation is calculated in the original space and no transformation to uncorrelated variables is required. The solution algorithms are based on the recently developed interior-point methods for semi-definite programming. One tutorial and one practical example explain the application.

[1]  G. Hachtel The simplicial approximation approach to design centering , 1977 .

[2]  J. Bandler,et al.  Optimal centering, tolerancing, and yield determination via updated approximations and cuts , 1978 .

[3]  R. Brayton,et al.  Yield maximization and worst-case design with arbitrary statistical distributions , 1980 .

[4]  Lars Taxén,et al.  Stochastic optimization in system design , 1981 .

[5]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[6]  John W. Bandler,et al.  Circuit optimization: the state of the art , 1988 .

[7]  Ping Yang,et al.  Parametric yield optimization for MOS circuit blocks , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  John W. Bandler,et al.  Efficient quadratic approximation for statistical design , 1989 .

[9]  Stephen W. Director,et al.  A new methodology for the design centering of IC fabrication processes , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Hany L. Abdel-Malek,et al.  The ellipsoidal technique for design centering and region approximation , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  K. Krishna,et al.  Optimization Of Parametric Yield: A Tutorial , 1992, 1992 Proceedings of the IEEE Custom Integrated Circuits Conference.

[12]  Peter Feldmann,et al.  OPTIMIZATION OF PARAMETRIC YIELD: A TUTORIAL , 1992 .

[13]  Sung-Mo Kang,et al.  Convexity-based algorithms for design centering , 1993, ICCAD '93.

[14]  Jirí Vlach,et al.  Ellipsoidal method for design centering and yield estimation , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[16]  Kurt Antreich,et al.  Circuit analysis and optimization driven by worst-case distances , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  M. A. Styblinski,et al.  Yield and variability optimization of integrated circuits , 1995 .

[18]  Stephen W. Director,et al.  The linearized performance penalty (LPP) method for optimization of parametric yield and its reliability , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[20]  J. Vlach,et al.  Design for nonsymmetrical statistical distributions , 1997 .

[21]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[22]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[23]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[24]  Kumaraswamy Ponnambalam,et al.  Probabilistic design of integrated circuits with correlated input parameters , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..