Deterministic switching of ferromagnetism at room temperature using an electric field

The technological appeal of multiferroics is the ability to control magnetism with electric field. For devices to be useful, such control must be achieved at room temperature. The only single-phase multiferroic material exhibiting unambiguous magnetoelectric coupling at room temperature is BiFeO3 (refs 4 and 5). Its weak ferromagnetism arises from the canting of the antiferromagnetically aligned spins by the Dzyaloshinskii–Moriya (DM) interaction. Prior theory considered the symmetry of the thermodynamic ground state and concluded that direct 180-degree switching of the DM vector by the ferroelectric polarization was forbidden. Instead, we examined the kinetics of the switching process, something not considered previously in theoretical work. Here we show a deterministic reversal of the DM vector and canted moment using an electric field at room temperature. First-principles calculations reveal that the switching kinetics favours a two-step switching process. In each step the DM vector and polarization are coupled and 180-degree deterministic switching of magnetization hence becomes possible, in agreement with experimental observation. We exploit this switching to demonstrate energy-efficient control of a spin-valve device at room temperature. The energy per unit area required is approximately an order of magnitude less than that needed for spin-transfer torque switching. Given that the DM interaction is fundamental to single-phase multiferroics and magnetoelectrics, our results suggest ways to engineer magnetoelectric switching and tailor technologically pertinent functionality for nanometre-scale, low-energy-consumption, non-volatile magnetoelectronics.

[1]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[2]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[3]  Vincent Garcia,et al.  Magnetoelectric Devices for Spintronics , 2014 .

[4]  Jun Hee Lee,et al.  Fatigue and retention in ferroelectric Y‐Ba‐Cu‐O/Pb‐Zr‐Ti‐O/Y‐Ba‐Cu‐O heterostructures , 1992 .

[5]  A. Mougin,et al.  Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. , 2009, Physical review letters.

[6]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[7]  Manuel Bibes,et al.  Spintronics with multiferroics , 2008 .

[8]  Sungjun Lee,et al.  High Speed SPM Applied for Direct Nanoscale Mapping of the Influence of Defects on Ferroelectric Switching Dynamics , 2012 .

[9]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[10]  E. Takayama-Muromachi,et al.  Neutron Powder Diffraction Study on the Crystal and Magnetic Structures of BiCrO3 , 2006 .

[11]  E. Dagotto,et al.  Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites , 2005, cond-mat/0508075.

[12]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[13]  J. Scott Room-temperature multiferroic magnetoelectrics , 2013 .

[14]  Ho Won Jang,et al.  Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. , 2010, Nature materials.

[15]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[16]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[17]  C. Binek,et al.  Magnetoelectronics with magnetoelectrics , 2005 .

[18]  M. J. Lee,et al.  Interface ferromagnetism and orbital reconstruction in BiFeO3-La(0.7)Sr(0.3)MnO3 heterostructures. , 2010, Physical review letters.

[19]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[20]  J. Katine,et al.  Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices , 2010 .

[21]  C. Fennie Ferroelectrically induced weak ferromagnetism by design. , 2007, Physical review letters.

[22]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[23]  L. Martin,et al.  Nanoscale control of domain architectures in BiFeO3 thin films. , 2009, Nano letters.

[24]  C. Fennie,et al.  Electric-field switchable magnetization via the Dzyaloshinskii–Moriya interaction: FeTiO3 versus BiFeO3 , 2008, 0806.0589.

[25]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[26]  Lin F. Yang,et al.  Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O3 structure at room temperature. , 2012, Physical review letters.

[27]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[28]  J. Íñiguez,et al.  First-principles predictions of low-energy phases of multiferroic BiFeO 3 , 2010, 1011.0563.

[29]  Yurong Yang,et al.  Prediction of a novel magnetoelectric switching mechanism in multiferroics. , 2014, Physical review letters.

[30]  P. Torelli,et al.  Electric control of magnetism at the Fe/BaTiO3 interface , 2014, Nature Communications.

[31]  Apurva Mehta,et al.  Discovery of giant magnetostriction in annealed Co1-xFex thin-films | NIST , 2011 .

[32]  J. Íñiguez,et al.  Electric control of the magnetization in BiFeO 3 /LaFeO 3 superlattices , 2013, 1305.5093.

[33]  Apurva Mehta,et al.  Giant magnetostriction in annealed Co(1-x)Fe(x) thin-films. , 2011, Nature communications.

[34]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.

[35]  M. Chi,et al.  Room-temperature multiferroic hexagonal LuFeO3 films. , 2012, Physical review letters.

[36]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[37]  R. Palgrave,et al.  A Polar Corundum Oxide Displaying Weak Ferromagnetism at Room Temperature , 2012, Journal of the American Chemical Society.

[38]  Ilya Krivorotov,et al.  Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers , 2011 .

[39]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[40]  K. Temst,et al.  Electric Field‐Induced Oxidation of Ferromagnetic/Ferroelectric Interfaces , 2013 .

[41]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[42]  M D Rossell,et al.  Reversible electric control of exchange bias in a multiferroic field-effect device. , 2010, Nature materials.

[43]  S. Cheong,et al.  Electric polarization reversal and memory in a multiferroic material induced by magnetic fields , 2004, Nature.

[44]  Nicola A. Spaldin,et al.  Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2005 .

[45]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[46]  D. Pierce,et al.  Interfacial coupling in multiferroic/ferromagnet heterostructures , 2013, 1304.5394.

[47]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[48]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[49]  J. Schubert,et al.  Mapping and statistics of ferroelectric domain boundary angles and types , 2011 .

[50]  C. Fennie,et al.  Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. , 2011, Physical review letters.

[51]  V. Garcia,et al.  Electric-field control of magnetic order above room temperature. , 2014, Nature materials.

[52]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[53]  T. Zhao,et al.  Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution , 2008 .

[54]  D. M. Evans,et al.  Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT , 2013, Nature Communications.

[55]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[56]  W. G. Maisch,et al.  Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4 , 1984 .