Iterative Methods for Roots of Polynomials

We describe iterative methods for polynomial zero finding and, specifically, the Laguerre method and how it is used in the NAG subroutine C02AFF. We also investigate a bug that has been in this subroutine for ten years. In chapter two, we give a brief survey of some zero finding methods. These include Bairstow's method, Bernoulli's method, Graeffe's root-squaring method, Muller's method, the Newton-Raphson method and the Jenkins-Traub and Laguerre methods. In chapter three, we look at the Laguerre method as used in C02AFF in further detail, describe the behaviour of the bug and how the problem has been solved. We also describe general tests for zero finding algorithms and results of comparisons between NAG's C02AFF and other zero finding programs. Chapter 4 involves comparisons of C02AFF with other methods and a note on error bounds. Finally, we make our proposals and conclusions in chapter 5.

[1]  B. Parlett Laguerre's Method Applied to the Matrix Eigenvalue Problem , 1964 .

[2]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[3]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[4]  Christoph W. Ueberhuber,et al.  Numerical Computation 2 , 1997 .

[5]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[6]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[7]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[8]  William H. Press,et al.  Numerical recipes , 1990 .

[9]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[10]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[11]  Joseph F. Traub,et al.  Principles for Testing Polynomial Zerofinding Programs , 1975, TOMS.

[12]  A. Ostrowski Solution of equations in Euclidean and Banach spaces , 1973 .

[13]  E. Hansen,et al.  A family of root finding methods , 1976 .

[14]  J. McNamee A bibliography on roots of polynomials , 1993 .

[15]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[16]  Gene H. Golub,et al.  A generalized Bairstow algorithm , 1967, CACM.

[17]  M. A. Jenkins,et al.  A three-stage variable-shift iteration for polynomial zeros and its relation to generalized rayleigh iteration , 1970 .

[18]  D. L. Waidelich,et al.  The numerical solution of equations , 1941, Electrical Engineering.

[19]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[20]  E. N. An Introduction to the Theory of Functions of a Complex Variable , 1936, Nature.

[21]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[22]  E. Hansen,et al.  Some modifications of Laguerre's method , 1977 .

[23]  Stefan Goedecker,et al.  Remark on Algorithms to Find Roots of Polynomials , 1994, SIAM J. Sci. Comput..

[24]  Ken W. Brodlie,et al.  On Bairstow’s method for the solution of polynomial equations , 1975 .

[25]  Peter Henrici,et al.  Essentials of numerical analysis, with pocket calculator demonstrations , 1982 .

[26]  M. A. Jenkins,et al.  A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration , 1970 .

[27]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[28]  A. Booth Numerical Methods , 1957, Nature.

[29]  Andrew G. Glen,et al.  APPL , 2001 .

[30]  Markus Lang,et al.  A New and Efficient Program for Finding All Polynomial Roots , 1993 .