Space-Efficient FPT Algorithms

We prove algorithmic results showing that a number of natural parameterized problems are in the restricted-space parameterized classes Para-L and FPT + XL. The first class comprises problems solvable in f(k)n time using g(k) + O(log n) bits of space (k is the parameter and n is the input size; f and g are computable functions). The second class comprises problems solvable under the same time bound, but using g(k) log n bits of space instead. Earlier work on these classes has focused largely on their structural aspects and their relationships with various other classes. We complement this with Para-L and FPT + XL algorithms for a restriction of Hitting Set, some graph deletion problems where the target class has an infinite forbidden set characterization, a number of problems parameterized by vertex cover number, and Feedback Vertex Set.

[1]  Michael Elberfeld,et al.  On the Space Complexity of Parameterized Problems , 2012, IPEC.

[2]  Michal Pilipczuk,et al.  Preprocessing subgraph and minor problems: When does a small vertex cover help? , 2012, J. Comput. Syst. Sci..

[3]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[4]  Stefan Fafianie,et al.  A Shortcut to (Sun)Flowers: Kernels in Logarithmic Space or Linear Time , 2015, MFCS.

[5]  Max Bannach,et al.  Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time , 2020, SWAT.

[6]  Bart M.P. Jansen,et al.  Preprocessing Vertex-Deletion Problems: Characterizing Graph Properties by Low-Rank Adjacencies , 2020, SWAT.

[7]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[8]  B. Jansen The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .

[9]  Max Bannach,et al.  Computing Hitting Set Kernels By AC0-Circuits , 2019, Theory of Computing Systems.

[10]  Jörg Flum,et al.  Describing parameterized complexity classes , 2002, Inf. Comput..

[11]  Saket Saurabh,et al.  Parameterized Streaming Algorithms for Min-Ones d-SAT , 2019, FSTTCS.

[12]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[13]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[14]  Hubie Chen,et al.  The Fine Classification of Conjunctive Queries and Parameterized Logarithmic Space , 2013, ACM Trans. Comput. Theory.

[15]  Andreas Jakoby,et al.  Logspace Versions of the Theorems of Bodlaender and Courcelle , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[16]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[17]  Michael Elberfeld,et al.  On the Space and Circuit Complexity of Parameterized Problems: Classes and Completeness , 2015, Algorithmica.

[18]  Liming Cai,et al.  Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..

[19]  Geevarghese Philip,et al.  A Quartic Kernel for Pathwidth-One Vertex Deletion , 2010, WG.