Process Capability Analysis for NonLinear Profiles Using Depth Functions

There are practical situations in which the quality of a process or product can be better characterized by a functional relationship between a response variable and one or more explanatory variables, which is called profile. Such profiles frequently can be represented adequately using linear or nonlinear models. While there are several studies in monitoring profiles, there are few studies to evaluate the capability of a process with profile quality characteristic; specifically, there is no method in the literature to analyze process capability characterized by nonlinear profiles. In this paper, we propose two methods to measure the capability of these processes, based on the concept of functional depth. These methods do not have distributional assumptions and extend to functional data the Process Capability Indexes proposed by Clements [1] to measure the capability of a process characterized by a random variable. Performance of the proposed methods is evaluated through simulation studies. An example illustrates the applicability of these methods. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Fugee Tsung,et al.  Monitoring General Linear Profiles Using Multivariate Exponentially Weighted Moving Average Schemes , 2007, Technometrics.

[2]  J. H. Shiau,et al.  Monitoring Nonlinear Profiles with Random Effects by Nonparametric Regression , 2009 .

[3]  William H. Woodall,et al.  Phase I Analysis of Linear Profiles With Calibration Applications , 2004, Technometrics.

[4]  Pedro Galeano,et al.  Spatial depth-based classification for functional data , 2013, 1305.2957.

[5]  Andrew Kusiak,et al.  Models for monitoring wind farm power , 2009 .

[6]  William H. Woodall,et al.  Controversies and Contradictions in Statistical Process Control , 2000 .

[7]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[8]  Robert Serfling,et al.  Quantile functions for multivariate analysis: approaches and applications , 2002 .

[9]  M. Z. Anis,et al.  Basic Process Capability Indices: An Expository Review , 2008 .

[10]  Abbas Saghaei,et al.  A CUSUM-based method for monitoring simple linear profiles , 2009 .

[11]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[12]  William H. Woodall,et al.  Statistical monitoring of nonlinear product and process quality profiles , 2007, Qual. Reliab. Eng. Int..

[13]  F. J. Pierce,et al.  Contemporary Statistical Models for the Plant and Soil Sciences , 2001 .

[14]  Rob J Hyndman,et al.  Rainbow Plots, Bagplots, and Boxplots for Functional Data , 2010 .

[15]  Joseph Moses Juran,et al.  Quality-control handbook , 1951 .

[16]  Douglas C. Montgomery,et al.  Using Control Charts to Monitor Process and Product Quality Profiles , 2004 .

[17]  Babak Abbasi,et al.  Evaluation of process capability indices of linear profiles , 2012 .

[18]  Peter R. Nelson,et al.  An analysis-of-means-type test for variances from normal populations , 1997 .

[19]  Douglas C. Montgomery,et al.  Performance evaluation of two methods for online monitoring of linear calibration profiles , 2006 .

[20]  R. Serfling,et al.  Structural properties and convergence results for contours of sample statistical depth functions , 2000 .

[21]  Mahmoud A. Mahmoud,et al.  On the Monitoring of Linear Profiles , 2003 .

[22]  Jean Meloche,et al.  Multivariate L-estimation , 1999 .

[23]  Bakhtiar Ostadi,et al.  Applications of Process Capability and Process Performance Indices , 2006 .

[24]  Changliang Zou,et al.  A control chart based on a change-point model for monitoring linear profiles , 2006 .

[25]  Timothy C. Krehbiel,et al.  Managing Process Capability , 1999 .

[26]  Seyedeh Zahra Hosseinifard,et al.  Performance Analysis in Non-normal Linear Profiles Using Gamma Distribution , 2011, 2011 Eighth International Conference on Information Technology: New Generations.

[27]  Ricardo Fraiman,et al.  On the use of the bootstrap for estimating functions with functional data , 2006, Comput. Stat. Data Anal..

[28]  Chunguang Zhou,et al.  A Self-Starting Control Chart for Linear Profiles , 2007 .

[29]  Rassoul Noorossana,et al.  Statistical Analysis of Profile Monitoring , 2011 .

[30]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[31]  Xuming He,et al.  On the limiting distributions of multivariate depth-based rank sum statistics and related tests , 2006, 0708.0167.

[32]  Ricardo Fraiman,et al.  Robust estimation and classification for functional data via projection-based depth notions , 2007, Comput. Stat..

[33]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[34]  Hamid Shahriari,et al.  A process capability index for simple linear profile , 2013 .

[35]  Zhonghua Li,et al.  Control chart based on likelihood ratio for monitoring linear profiles , 2009, Comput. Stat. Data Anal..

[36]  Timothy M. Young,et al.  Multivariate control charts of MDF and OSB vertical density profile attributes , 1999 .

[37]  Y. Zuo Projection-based depth functions and associated medians , 2003 .

[38]  Zachary G. Stoumbos Process capability indices: overview and extensions , 2002 .

[39]  Fugee Tsung,et al.  Using Profile Monitoring Techniques for a Data‐rich Environment with Huge Sample Size , 2005 .

[40]  Jin Wang,et al.  On scale curves for nonparametric description of dispersion , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.

[41]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[42]  Rassoul Noorossana,et al.  Statistical Analysis of Profile Monitoring: Noorossana/Profile Monitoring , 2011 .

[43]  Douglas C. Montgomery,et al.  PROCESS CAPABILITY INDICES AND NON-NORMAL DISTRIBUTIONS , 1996 .

[44]  Cun-Hui Zhang,et al.  The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Amirhossein Amiri,et al.  Evaluation of process capability in multivariate simple linear profiles , 2012 .

[46]  F. S. Stover,et al.  Statistical quality control applied to ion chromatography calibrations , 1998 .

[47]  A. Vaghefi,et al.  Phase II Monitoring of Nonlinear Profiles , 2009 .

[48]  S. P. Wright,et al.  Comparing Curves Using Additive Models , 2002 .

[49]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[50]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[51]  Seyedeh Zahra Hosseinifard,et al.  Process Capability Analysis in Non Normal Linear Regression Profiles , 2012, Commun. Stat. Simul. Comput..

[52]  M. Febrero,et al.  Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels , 2008 .

[53]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[54]  Fred A. Spiring Process capability: A total quality management tool , 1995 .

[55]  Juan Romo,et al.  A half-region depth for functional data , 2011, Comput. Stat. Data Anal..

[56]  Victor E. Kane,et al.  Process Capability Indices , 1986 .

[57]  Juan Romo,et al.  Depth-based inference for functional data , 2007, Comput. Stat. Data Anal..

[58]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[59]  Wenceslao González-Manteiga,et al.  A functional analysis of NOx levels: location and scale estimation and outlier detection , 2007, Comput. Stat..

[60]  V. Barnett The Ordering of Multivariate Data , 1976 .

[61]  Robert Serfling,et al.  Nonparametric Multivariate Descriptive Measures Based on Spatial Quantiles , 2004 .

[62]  Ismael Sánchez,et al.  Capability indices and nonconforming proportion in univariate and multivariate processes , 2009 .

[63]  Lan Kang,et al.  On-Line Monitoring When the Process Yields a Linear Profile , 2000 .

[64]  William H. Woodall,et al.  Current research on profile monitoring , 2007 .

[65]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[66]  E. Ziegel Juran's Quality Control Handbook , 1988 .

[67]  T. Bradstreet Pharmaceutical Statistics Using SAS: A Practical Guide , 2008 .

[68]  R. Fraiman,et al.  Trimmed means for functional data , 2001 .

[69]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[70]  Mahmoud A. Mahmoud,et al.  A change point method for linear profile data , 2007, Qual. Reliab. Eng. Int..

[71]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.