Macrophages dictate the progression and manifestation of hypertensive heart disease.

[1]  Tsonwin Hai,et al.  ATF3-dependent cross-talk between cardiomyocytes and macrophages promotes cardiac maladaptive remodeling. , 2015, International journal of cardiology.

[2]  J. Galligan,et al.  Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats. , 2015, American journal of physiology. Heart and circulatory physiology.

[3]  C. Sobey,et al.  M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. , 2015, American journal of physiology. Heart and circulatory physiology.

[4]  D. Harrison,et al.  Myeloid Suppressor Cells Accumulate and Regulate Blood Pressure in Hypertension. , 2015, Circulation research.

[5]  L. Hui,et al.  High salt primes a specific activation state of macrophages, M(Na) , 2015, Cell Research.

[6]  G. Schelling,et al.  Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. , 2015, Translational research : the journal of laboratory and clinical medicine.

[7]  Yanfei Qi,et al.  Involvement of bone marrow cells and neuroinflammation in hypertension. , 2015, Circulation research.

[8]  Joseph A. Hill,et al.  Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. , 2015, Circulation.

[9]  Ryan A Frieler,et al.  Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. , 2015, Circulation.

[10]  R. Margalit,et al.  Targeting Macrophage Subsets for Infarct Repair , 2015, Journal of cardiovascular pharmacology and therapeutics.

[11]  A. Hoeft,et al.  Ly6Clow and Not Ly6Chigh Macrophages Accumulate First in the Heart in a Model of Murine Pressure-Overload , 2014, PloS one.

[12]  Jens Titze,et al.  Macrophages in homeostatic immune function , 2014, Front. Physiol..

[13]  K. Fujiu,et al.  Cardioprotective function of cardiac macrophages. , 2014, Cardiovascular research.

[14]  M. Young,et al.  CCL2-dependent macrophage recruitment is critical for mineralocorticoid receptor-mediated cardiac fibrosis, inflammation, and blood pressure responses in male mice. , 2014, Endocrinology.

[15]  Ansuman T. Satpathy,et al.  Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. , 2014, Immunity.

[16]  J. Leor,et al.  Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. , 2013, Journal of the American College of Cardiology.

[17]  M. Giacca,et al.  Macrophage MicroRNA-155 Promotes Cardiac Hypertrophy and Failure , 2013, Circulation.

[18]  G. Lip,et al.  Role of microRNAs in cardiac remodelling: new insights and future perspectives. , 2013, International journal of cardiology.

[19]  Joseph A. Hill,et al.  Pathological Ventricular Remodeling: Mechanisms Part 1 of 2 , 2013, Circulation.

[20]  T. Kushnir,et al.  Non-invasive assessment of experimental autoimmune myocarditis in rats using a 3 T clinical MRI scanner. , 2013, European heart journal cardiovascular Imaging.

[21]  J. Pollard,et al.  Macrophage biology in development, homeostasis and disease , 2013, Nature.

[22]  Daniel G. Anderson,et al.  Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice , 2013, Circulation.

[23]  J. Armitage,et al.  Reversal of Vascular Macrophage Accumulation and Hypertension by a CCR2 Antagonist in Deoxycorticosterone/Salt-Treated Mice , 2012, Hypertension.

[24]  L. Delbridge,et al.  Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. , 2012, Endocrinology.

[25]  S. Akira,et al.  Mitochondrial DNA That Escapes from Autophagy Causes Inflammation and Heart Failure , 2012, Nature.

[26]  K. Chowdhury,et al.  The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy , 2012, Nature Communications.

[27]  R. Vasan,et al.  Advances in the Epidemiology of Heart Failure and Left Ventricular Remodeling , 2011, Circulation.

[28]  T. Coffman,et al.  Under pressure: the search for the essential mechanisms of hypertension , 2011, Nature Medicine.

[29]  A. Waisman,et al.  Lysozyme M–Positive Monocytes Mediate Angiotensin II–Induced Arterial Hypertension and Vascular Dysfunction , 2011, Circulation.

[30]  Antony Vinh,et al.  Inflammation, Immunity, and Hypertension , 2011, Hypertension.

[31]  M. Drazner The Progression of Hypertensive Heart Disease , 2011, Circulation.

[32]  W. Zimmermann,et al.  Common MicroRNA Signatures in Cardiac Hypertrophic and Atrophic Remodeling Induced by Changes in Hemodynamic Load , 2010, PloS one.

[33]  O. Carretero,et al.  Local angiotensin II aggravates cardiac remodeling in hypertension. , 2010, American journal of physiology. Heart and circulatory physiology.

[34]  K. Weber,et al.  Fibrosis in hypertensive heart disease: molecular pathways and cardioprotective strategies , 2010, Journal of hypertension.

[35]  G. Schütz,et al.  Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. , 2010, The Journal of clinical investigation.

[36]  N. Van Rooijen,et al.  Blood pressure control: a facelift for macrophages? , 2010, Hypertension.

[37]  M. Raizada,et al.  Brain Microglial Cytokines in Neurogenic Hypertension , 2010, Hypertension.

[38]  Luke Barron,et al.  Macrophages: Master Regulators of Inflammation and Fibrosis , 2010, Seminars in liver disease.

[39]  Ehud Raanani,et al.  Patient Characteristics and Cell Source Determine the Number of Isolated Human Cardiac Progenitor Cells , 2009, Circulation.

[40]  M. Young,et al.  Deletion of Mineralocorticoid Receptors From Macrophages Protects Against Deoxycorticosterone/Salt-Induced Cardiac Fibrosis and Increased Blood Pressure , 2009, Hypertension.

[41]  K. Alitalo,et al.  Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism , 2009, Nature Medicine.

[42]  J. Maessen,et al.  Macrophage Depletion in Hypertensive Rats Accelerates Development of Cardiomyopathy , 2009, Journal of cardiovascular pharmacology and therapeutics.

[43]  H. Inoue,et al.  Fasudil Attenuates Myocardial Fibrosis in Association With Inhibition of Monocyte/Macrophage Infiltration in the Heart of DOCA/Salt Hypertensive Rats , 2007, Journal of cardiovascular pharmacology.

[44]  E. Schiffrin,et al.  Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. , 2007, American journal of physiology. Heart and circulatory physiology.

[45]  B. Rollins,et al.  Critical Role of Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 in the Pathogenesis of Ischemic Cardiomyopathy , 2007, Circulation.

[46]  B. Rollins,et al.  CCL2/Monocyte Chemoattractant Protein-1 Regulates Inflammatory Responses Critical to Healing Myocardial Infarcts , 2005, Circulation research.

[47]  M. Mäyränpää,et al.  Induction of local angiotensin II-producing systems in stenotic aortic valves. , 2004, Journal of the American College of Cardiology.

[48]  E. Olson,et al.  Hypertrophy of the heart: a new therapeutic target? , 2004, Circulation.

[49]  P. Blackshear,et al.  Load-Dependent and -Independent Regulation of Proinflammatory Cytokine and Cytokine Receptor Gene Expression in the Adult Mammalian Heart , 2002, Circulation.

[50]  R. Dilley,et al.  Experimental cardiac fibrosis: differential time course of responses to mineralocorticoid-salt administration. , 2001, Endocrinology.

[51]  R. Kerber,et al.  Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. , 2000, Circulation.

[52]  C. Johnston,et al.  Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. , 1998, Circulation.

[53]  C. Yagil,et al.  Genetic basis of salt-susceptibility in the Sabra rat model of hypertension. , 1998, Kidney international.

[54]  D. Ganten,et al.  Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of salt sensitivity and resistance , 1996, Journal of hypertension.

[55]  N. Van Rooijen,et al.  Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. , 1994, Journal of immunological methods.

[56]  W Grossman,et al.  Wall stress and patterns of hypertrophy in the human left ventricle. , 1975, The Journal of clinical investigation.

[57]  W. Campbell,et al.  Role of macrophage PPARγ in experimental hypertension. , 2014, American journal of physiology. Heart and circulatory physiology.