Leveraging the ALMA Atacama Compact Array for Cometary Science: An Interferometric Survey of Comet C/2015 ER61 (PanSTARRS) and Evidence for a Distributed Source of Carbon Monosulfide

We report the first survey of molecular emission from cometary volatiles using standalone Atacama Compact Array (ACA) observations from the Atacama Large Millimeter/Submillimeter Array (ALMA) toward comet C/2015 ER61 (PanSTARRS) carried out on UT 2017 April 11 and 15, shortly after its April 4 outburst. These measurements of HCN, CS, CH3OH, H2CO, and HNC (along with continuum emission from dust) probed the inner coma of C/2015 ER61, revealing asymmetric outgassing and discerning parent from daughter/distributed source species. This work presents spectrally integrated flux maps, autocorrelation spectra, production rates, and parent scale lengths for each molecule and a stringent upper limit for CO. HCN is consistent with direct nucleus release in C/2015 ER61, whereas CS, H2CO, HNC, and potentially CH3OH are associated with distributed sources in the coma. Adopting a Haser model, parent scale lengths determined for H2CO (L p ∼ 2200 km) and HNC (L p ∼ 3300 km) are consistent with previous work in comets, whereas significant extended source production (L p ∼ 2000 km) is indicated for CS, suggesting production from an unknown parent in the coma. The continuum presents a point-source distribution with a flux density implying an excessively large nucleus, inconsistent with other estimates of the nucleus size. It is best explained by the thermal emission of slowly moving outburst ejectas, with total mass 5–8 × 1010 kg. These results demonstrate the power of the ACA for revealing the abundances, spatial distributions, and locations of molecular production for volatiles in moderately bright comets such as C/2015 ER61.

[1]  N. Biver,et al.  First Comet Observations with NIRSPEC-2 at Keck: Outgassing Sources of Parent Volatiles and Abundances Based on Alternative Taxonomic Compositional Baselines in 46P/Wirtanen , 2021 .

[2]  Miguel de Val-Borro,et al.  Rapidly Varying Anisotropic Methanol (CH3OH) Production in the Inner Coma of Comet 46P/Wirtanen as Revealed by the ALMA Atacama Compact Array , 2021, 2103.06684.

[3]  N. Mason,et al.  Sulfur Ice Astrochemistry: A Review of Laboratory Studies , 2021, 2101.05001.

[4]  E. Gibb,et al.  Chemical Composition of Outbursting Comet C/2015 ER61 (PanSTARRS) , 2021, The Astronomical Journal.

[5]  R. Vervack,et al.  Carbonyl Sulfide (OCS): Detections in Comets C/2002 T7 (LINEAR), C/2015 ER61 (PanSTARRS), and 21P/Giacobini–Zinner and Stringent Upper Limits in 46P/Wirtanen , 2020, The Astronomical Journal.

[6]  E. Bergin,et al.  Unusually high CO abundance of the first active interstellar comet , 2020, Nature Astronomy.

[7]  J. Berthelier,et al.  Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae , 2019, Nature Astronomy.

[8]  F. Selman,et al.  First observations of an outbursting comet with the MUSE integral-field spectrograph , 2019, Astronomy & Astrophysics.

[9]  Helmut Wiesemeyer,et al.  Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets , 2019, Astronomy & Astrophysics.

[10]  Miguel de Val-Borro,et al.  ALMA Autocorrelation Spectroscopy of Comets: The HCN/H13CN Ratio in C/2012 S1 (ISON) , 2019, The Astrophysical Journal.

[11]  N. Biver,et al.  The composition of cometary ices , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  M. Hogerheijde,et al.  Exploring the volatile composition of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) with ALMA , 2017, 1705.02812.

[13]  R. Wainscoat,et al.  Beginning of Activity in Long-period Comet C/2015 ER61 (PANSTARRS) , 2017 .

[14]  J. Berthelier,et al.  Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko , 2016 .

[15]  Jonathan Tennyson,et al.  The 2015 edition of the GEISA spectroscopic database , 2016 .

[16]  D. Lis,et al.  Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy) , 2015, Science Advances.

[17]  W. Huebner,et al.  Photoionization and photodissociation rates in solar and blackbody radiation fields , 2015 .

[18]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[19]  M. J. Mumma,et al.  MAPPING THE RELEASE OF VOLATILES IN THE INNER COMAE OF COMETS C/2012 F6 (LEMMON) AND C/2012 S1 (ISON) USING THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY , 2014, 1408.2458.

[20]  R. Moreno,et al.  Gas and dust productions of Comet 103P/Hartley 2 from millimetre observations: Interpreting rotation-induced time variations , 2013, 1310.2600.

[21]  Munetaka Ueno,et al.  AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS , 2012 .

[22]  E. Lellouch,et al.  Interferometric mapping of the 3.3-mm continuum emission of comet 17P/Holmes after its 2007 outburst , 2012, 1205.0432.

[23]  D. Jewitt,et al.  THE SOURCES OF HCN AND CH3OH AND THE ROTATIONAL TEMPERATURE IN COMET 103P/HARTLEY 2 FROM TIME-RESOLVED MILLIMETER SPECTROSCOPY , 2012, 1202.3194.

[24]  A. Cochran,et al.  Thirty Years of Cometary Spectroscopy from McDonald Observatory , 2011, 1112.4770.

[25]  Harold F. Levison,et al.  LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK , 2011 .

[26]  E. Lellouch,et al.  Earth-based detection of the millimetric thermal emission from the nucleus of comet 8P/Tuttle , 2011, 1101.3415.

[27]  M. R. Hogerheijde,et al.  LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths , 2010, 1008.1492.

[28]  D. Flower,et al.  The rotational excitation of methanol by molecular hydrogen , 2010 .

[29]  D. Bockel'ee-Morvan,et al.  Radio observations of Jupiter-family comets , 2008, 0808.3843.

[30]  N. Fray,et al.  Distributed Sources in Comets , 2008 .

[31]  J. Crovisier,et al.  Hydrogen Isocyanide in Comet 73P/Schwassmann-Wachmann (Fragment B) , 2007, 0711.4549.

[32]  N. Biver,et al.  Radiative transfer simulation of water rotational excitation in comets. Comparison of the Monte Carl , 2007 .

[33]  R. Moreno,et al.  Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp) , 2007, 0709.3792.

[34]  M. Wright,et al.  Formaldehyde in Comets C/1995 O1 (Hale-Bopp), C/2002 T7 (LINEAR), and C/2001 Q4 (NEAT): Investigating the Cometary Origin of H2CO , 2006 .

[35]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[36]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[37]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[38]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[39]  N. Biver,et al.  Origin of the formaldehyde (H2CO) extended source in comet C/1995 O1 (Hale-Bopp) , 2004 .

[40]  R. Moreno,et al.  Spectroscopic Monitoring of Comet C/1996 B2 (Hyakutake) with the JCMT and IRAM Radio Telescopes , 1999 .

[41]  E. Bergin,et al.  Chemical processing in the coma as the source of cometary HNC , 1998, Nature.

[42]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[43]  W. Jackson,et al.  The origin of CS in comet IRAS-Araki-Alcock 1983d , 1986 .

[44]  Robert L. Millis,et al.  The ensemble properties of comets: Results from narrowband photometry of 85 comets , 1995 .