Infaunal augurs of the Cambrian explosion: An Ediacaran trace fossil assemblage from Nevada, USA

Morphologically complex trace fossils, recording the infaunal activities of bilaterian animals, are common in Phanerozoic successions but rare in the Ediacaran fossil record. Here, we describe a trace fossil assemblage from the lower Dunfee Member of the Deep Spring Formation at Mount Dunfee (Nevada, USA), over 500 m below the Ediacaran–Cambrian boundary. Although millimetric in scale and largely not fabric‐disruptive, the Dunfee assemblage includes complex and sediment‐penetrative trace fossil morphologies that are characteristic of Cambrian deposits. The Dunfee assemblage records one of the oldest documented instances of sediment‐penetrative infaunalization, corroborating previous molecular, ichnologic, and paleoecological data suggesting that crown‐group bilaterians and bilaterian‐style ecologies were present in late Ediacaran shallow marine ecosystems. Moreover, Dunfee trace fossils co‐occur with classic upper Ediacaran tubular body fossils in multiple horizons, indicating that Ediacaran infauna and epifauna coexisted and likely formed stable ecosystems.

[1]  D. Rhoads,et al.  The influence of deposit-feeding organisms on sediment stability and community trophic structure , 2020, Journal of Marine Research.

[2]  M. Droser,et al.  Piecing together the puzzle of the Ediacara Biota: Excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia) , 2017, Palaeogeography, Palaeoclimatology, Palaeoecology.

[3]  U. Schaltegger,et al.  New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion , 2018, Terra Nova.

[4]  M. Droser,et al.  Ecological Expansion and Extinction in the Late Ediacaran: Weighing the Evidence for Environmental and Biotic Drivers. , 2018, Integrative and comparative biology.

[5]  S. Xiao,et al.  Late Ediacaran trackways produced by bilaterian animals with paired appendages , 2018, Science Advances.

[6]  S. Jensen,et al.  Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion , 2018, Scientific Reports.

[7]  L. Tarhan The early Paleozoic development of bioturbation—Evolutionary and geobiological consequences , 2018 .

[8]  Y. Iryu,et al.  Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution , 2018, Royal Society Open Science.

[9]  R. Garwood,et al.  Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil , 2017, Nature Ecology & Evolution.

[10]  S. Tweedt,et al.  A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link , 2017, Proceedings of the Royal Society B: Biological Sciences.

[11]  D. Grazhdankin,et al.  Towards an ediacaran time scale: Problems, protocols, and prospects , 2016 .

[12]  D. Schrag,et al.  The end of the Ediacaran: Two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA , 2016 .

[13]  D. McIlroy,et al.  Ichnological evidence for the Cambrian explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern Norway , 2016, Special Publications.

[14]  D. Erwin,et al.  A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia , 2016 .

[15]  D. Schrag,et al.  Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia , 2016 .

[16]  D. Erwin Novelty and Innovation in the History of Life , 2015, Current Biology.

[17]  D. Erwin,et al.  Biotic replacement and mass extinction of the Ediacara biota , 2015, Proceedings of the Royal Society B: Biological Sciences.

[18]  D. McIlroy,et al.  CONFIRMING THE METAZOAN CHARACTER OF A 565 MA TRACE-FOSSIL ASSEMBLAGE FROM MISTAKEN POINT, NEWFOUNDLAND , 2014 .

[19]  F. Macdonald,et al.  Trace Fossils with Spreiten from the Late Ediacaran Nama Group, Namibia: Complex Feeding Patterns Five Million Years Before The Precambrian–Cambrian Boundary , 2014 .

[20]  J. Schiffbauer,et al.  Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors , 2013 .

[21]  S. Jensen,et al.  New information on the Ediacaran-Cambrian transition in the Vestertana Group, Finnmark, northern Norway, from trace fossils and organic-walled microfossils , 2013 .

[22]  K. Konhauser,et al.  Bilaterian Burrows and Grazing Behavior at >585 Million Years Ago , 2012, Science.

[23]  M. Schmitz Appendix 2 – Radiometric ages used in GTS2012 , 2012 .

[24]  G. Retallack First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfou , 2010 .

[25]  M. Solan,et al.  Global patterns of bioturbation intensity and mixed depth of marine soft sediments , 2010 .

[26]  D. McIlroy,et al.  First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland , 2010 .

[27]  Fei Wang,et al.  SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary , 2009 .

[28]  S. Jensen,et al.  A Critical Look at the Ediacaran Trace Fossil Record , 2006 .

[29]  B. Runnegar,et al.  A complex trace fossil from the Spitskop Member (terminal Ediacaran–? Lower Cambrian) of southern Namibia , 2005, Geological Magazine.

[30]  Wei Wang,et al.  U-Pb Ages from the Neoproterozoic Doushantuo Formation, China , 2005, Science.

[31]  F. Corsetti,et al.  The Precambrian- Cambrian Transition in the Southern Great Basin, USA , 2003 .

[32]  S. Jensen The Proterozoic and Earliest Cambrian Trace Fossil Record; Patterns, Problems and Perspectives1 , 2003, Integrative and comparative biology.

[33]  J. Cooper,et al.  Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin , 2001 .

[34]  S. Jensen,et al.  Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland , 2001, Geological Magazine.

[35]  S. Jensen,et al.  Complex trace fossils from the terminal Proterozoic of Namibia , 2000 .

[36]  M. F. Miller,et al.  A semiquantitative field method for evaluating bioturbation on bedding planes , 1997 .

[37]  A. J. Kaufman,et al.  Chemostratigraphy of Neoproterozoic-Cambrian units, White-Inyo Region, eastern California and western Nevada; implications for global correlation and faunal distribution , 1994 .

[38]  M. Levy,et al.  Tectonic Subsidence of the Early Paleozoic Passive Continental Margin in Eastern California and Southern Nevada , 1991 .

[39]  Mary L. Droser,et al.  A semiquantitative field classification of ichnofabric , 1986 .

[40]  J. Mount,et al.  Paleoenvironments of an Earliest Cambrian (Tommotian) Shelly Fauna in the Southwestern Great Basin, U.S.A. , 1986 .

[41]  M. Kominz,et al.  Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup, and crustal thinning , 1984 .

[42]  L. Mayer,et al.  Subsidence analysis of the Cordilleran miogeocline: Implications for timing of late Proterozoic rifting and amount of extension , 1983 .

[43]  P. Sadler Sediment Accumulation Rates and the Completeness of Stratigraphic Sections , 1981, The Journal of Geology.

[44]  J. H. Stewart Upper Precambrian and lower Cambrian strata in the southern Great Basin, California and Nevada , 1970 .