High-dispersive mirrors for high power applications.

We report on the development and manufacturing of two different types of high-dispersive mirrors (HDM). One of them provides a record value for the group delay dispersion (GDD) of -4000 fs2 and covers the wavelength range of 1027-1033 nm, whereas the other one provides -3000 fs2 over the wavelength range of 1020-1040 nm. Both of the fabricated mirrors exhibit a reflectance of >99.9% and are well suited for intracavity applications. Mirrors of the second type have been successfully employed in a Kerr-lens mode-locked Yb:YAG thin-disk oscillator for the generation of 200-fs pulses with multi-10-W average power.

[1]  Andre Delage,et al.  Optical properties of pseudomorphic Si/sub 1-x/Ge/sub x/ for Si-based waveguides at the /spl lambda/=1300-nm and 1550-nm telecommunications wavelength bands , 1998 .

[2]  V. L. Kalashnikov,et al.  High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. , 2011, Optics letters.

[3]  K. Sokolowski-Tinten,et al.  Laser-solid interaction in the femtosecond time regime , 1997 .

[4]  Alexander V. Tikhonravov,et al.  1.5-octave chirped mirror for pulse compression down to sub-3 fs , 2007 .

[5]  Vladimir Pervak,et al.  Measurement of group delay of dispersive mirrors with white-light interferometer. , 2009, Applied optics.

[6]  Michael K. Trubetskov,et al.  Robust synthesis of dispersive mirrors , 2011, Optical Systems Design.

[7]  Thomas Dekorsy,et al.  Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[8]  F. Krausz Attosecond Physics , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[9]  G. Steinmeyer,et al.  Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave. , 2003, Optics express.

[10]  B Golubovic,et al.  Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers. , 2000, Optics letters.

[11]  Ferenc Krausz,et al.  Tilted-front-interface chirped mirrors , 2001 .

[12]  K. Petermann,et al.  High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation , 2009 .

[13]  U. Morgner,et al.  Microjoule pulses from a passively mode-locked Yb:KY(WO(4))(2) thin-disk oscillator with cavity dumping. , 2007, Optics letters.

[14]  F. Krausz,et al.  Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. , 1994, Optics letters.

[15]  Tino Eidam,et al.  Power scaling of a high-repetition-rate enhancement cavity. , 2010, Optics letters.

[16]  P. Apai,et al.  Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers , 2000 .

[17]  V Pervak,et al.  High-dispersive mirrors for femtosecond lasers. , 2008, Optics express.

[18]  M Trubetskov,et al.  Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory. , 2008, Optics Express.

[19]  V Pervak,et al.  Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers. , 2007, Optics letters.

[20]  Alexander V. Tikhonravov,et al.  Robust synthesis of multilayer coatings , 2010 .

[21]  A. Tikhonravov,et al.  Optical coating design approaches based on the needle optimization technique. , 2007, Applied optics.

[22]  Ursula Keller,et al.  Femtosecond laser oscillators for high-field science , 2008 .

[23]  James G. Fujimoto,et al.  Ultrabroadband double-chirped mirror pairs for generation of octave spectra , 2001 .

[24]  A. Tikhonravov,et al.  Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses. , 2009, Optics express.

[25]  V. Laude,et al.  Chirped-mirror pairs for ultra-broadband dispersion control , 1999 .

[26]  Matthias Golling,et al.  Pulse energy scaling to 5 μJ from a femtosecond thin disk laser , 2006 .

[27]  V Pervak,et al.  Chirped-pulse amplification of laser pulses with dispersive mirrors. , 2009, Optics express.

[28]  J. Fujimoto,et al.  Toward single-cycle laser systems , 2003 .

[29]  Ursula Keller,et al.  Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics , 1999 .

[30]  Thomas Dekorsy,et al.  Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator , 2011 .

[31]  V Pervak,et al.  Double-angle multilayer mirrors with smooth dispersion characteristics. , 2009, Optics express.

[32]  H. Haus,et al.  Design and fabrication of double-chirped mirrors. , 1997, Optics letters.

[33]  Alexander Apolonski,et al.  Energy scalability of mode-locked oscillators: a completely analytical approach to analysis. , 2010, Optics express.

[34]  M. K. Trubetskov,et al.  Robust synthesis of dispersive mirrors. , 2011, Optics express.

[35]  A. Tikhonravov,et al.  Application of the needle optimization technique to the design of optical coatings. , 1996, Applied optics.

[36]  Matthias Golling,et al.  Femtosecond thin-disk laser with 141 W of average power. , 2010, Optics letters.

[37]  G. Mourou,et al.  Laser ablation and micromachining with ultrashort laser pulses , 1997 .

[38]  K. Petermann,et al.  Efficient femtosecond high power Yb:Lu(2)O(3) thin disk laser. , 2007, Optics express.