Estimation from Burr type XII distribution using progressive first-failure censored data

In this paper, a new life test plan called a progressively first-failure-censoring scheme introduced by Wu and Kuş [On estimation based on progressive first-failure-censored sampling, Comput. Statist. Data Anal. 53(10) (2009), pp. 3659–3670] is considered. Based on this type of censoring, the maximum likelihood (ML) and Bayes estimates for some survival time parameters namely reliability and hazard functions, as well as the parameters of the Burr-XII distribution are obtained. The Bayes estimators relative to both the symmetric and asymmetric loss functions are discussed. We use the conjugate prior for the one-shape parameter and discrete prior for the other parameter. Exact and approximate confidence intervals with the exact confidence region for the two-shape parameters are derived. A numerical example using the real data set is provided to illustrate the proposed estimation methods developed here. The ML and the different Bayes estimates are compared via a Monte Carlo simulation study.

[1]  Z. F. Jaheen,et al.  Bayesian prediction bounds for the Burr type XII distribution in the presence of outliers , 1996 .

[2]  N. Balakrishnan,et al.  Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples , 2003, IEEE Trans. Reliab..

[3]  A. A. Soliman,et al.  Estimation of parameters of life from progressively censored data using Burr-XII model , 2005, IEEE Transactions on Reliability.

[4]  Jong-Wuu Wu,et al.  Statistical inference about the shape parameter of the Burr type XII distribution under the failure-censored sampling plan , 2005, Appl. Math. Comput..

[5]  N. Balakrishnan,et al.  Reliability sampling plans for lognormal distribution, based on progressively-censored samples , 2000, IEEE Trans. Reliab..

[6]  Otto Dykstra,et al.  Theory and Technique of Variation Research , 1965 .

[7]  Jian Chai,et al.  Empirical Bayes estimators of reliability performances using LINEX loss under progressively Type-II censored samples , 2007, Math. Comput. Simul..

[8]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[9]  Jong-Wuu Wu,et al.  Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan , 2003 .

[10]  Shuo-Jye Wu,et al.  On estimation based on progressive first-failure-censored sampling , 2009, Comput. Stat. Data Anal..

[11]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[12]  J. Bert Keats,et al.  The Burr XII Distribution in Reliability Analysis , 1998 .

[13]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[14]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[15]  Tzong-Ru Tsai,et al.  Limited failure-censored life test for the Weibull distribution , 2001, IEEE Trans. Reliab..

[16]  H. K. T. Ng,et al.  Parameter estimation for a modified Weibull distribution, for progressively type-II censored samples , 2005, IEEE Transactions on Reliability.

[17]  Narayanaswamy Balakrishnan,et al.  Optimal Progressive Censoring Plans for the Weibull Distribution , 2004, Technometrics.

[18]  Isaac Levi,et al.  Compromising Bayesianism: a plea for indeterminacy , 1990 .

[19]  W. R. Buckland,et al.  Theory and Technique of Variation Research. , 1965 .

[20]  Narayanaswamy Balakrishnan,et al.  A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .

[21]  Z. F. Jaheen,et al.  Bayesian prediction bounds for the burr type XII failure model , 1995 .

[22]  N. Balakrishnan,et al.  On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data , 2008 .

[23]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[24]  A. W. Lewis The Burr distribution as a general parametric family in survivorship and reliability theory applications , 1981 .

[25]  Dipak K. Dey,et al.  On comparison of estimators in a generalized life model , 1992 .

[26]  D. R. Wingo,et al.  Maximum Likelihood Methods for Fitting the Burr Type XII Distribution to Life Test Data , 1983 .

[27]  A. Asgharzadeh,et al.  Estimation Based on Progressively Censored Data from the Burr Model , 2008 .

[28]  I. W. Burr Cumulative Frequency Functions , 1942 .

[29]  Gyan Prakash,et al.  Shrinkage estimation in exponential type-II censored data under LINEX loss , 2008 .

[30]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[31]  Narayanaswamy Balakrishnan,et al.  Progressive censoring methodology: an appraisal , 2007 .

[32]  Ahmed A. Soliman,et al.  Bayesian Inference and Prediction of Burr Type XII Distribution for Progressive First Failure Censored Sampling , 2011, Intell. Inf. Manag..

[33]  Dipak K. Dey,et al.  Simultaneous estimation of parameters under entropy loss , 1986 .

[34]  Sang-Ho Lee,et al.  Variables sampling plans for Weibull distributed lifetimes under sudden death testing , 2006, IEEE Transactions on Reliability.

[36]  Shuo-Jye Wu ESTIMATIONS OF THE PARAMETERS OF THE WEIBULL DISTRIBUTION WITH PROGRESSIVELY CENSORED DATA , 2002 .

[37]  Z. F. Jaheen,et al.  Approximate Bayes estimators applied to the Burr model , 1994 .

[38]  Ahmed A. Soliman,et al.  Estimations for Pareto Model Using General Progressive Censored Data and Asymmetric Loss , 2008 .

[39]  Chin-Chuan Wu,et al.  Interval estimation of a two-parameter Burr-XII distribution under progressive censoring , 2010 .

[40]  Liming Xiang,et al.  Interval Estimation for Weibull-Distributed Life Data Under Type II Progressive Censoring with Random Removals , 2003, Journal of biopharmaceutical statistics.