A Drosophila larval premotor/motor neuron connectome generating two behaviors via distinct spatio-temporal muscle activity

Animals generate diverse motor behaviors, yet how the same motor neurons generate distinct behaviors remains an open question. Drosophila larvae have multiple behaviors – e.g. forward crawling, backward crawling, self-righting and escape – and all of the body wall motor neurons (MNs) driving these behaviors have been identified. Despite impressive progress in mapping larval motor circuits, the role of most motor neurons in locomotion remains untested, the majority of premotor neurons (PMNs) remain to be identified, and a full understanding of proprioceptor-PMN-MN connectivity is missing. Here we report a comprehensive larval proprioceptor-PMN-MN connectome; describe individual muscle/MN phase activity during both forward and backward locomotor behaviors; identify PMN-MN connectivity motifs that could generate muscle activity phase relationships, plus selected experimental validation; identify proprioceptor-PMN connectivity that provides an anatomical explanation for the role of proprioception in promoting locomotor velocity; and identify a new candidate escape motor circuit. Finally, we generate a recurrent network model that produces the observed sequence of motor activity, showing that the identified pool of premotor neurons is sufficient to generate two distinct larval behaviors. We conclude that different locomotor behaviors can be generated by a specific group of premotor neurons generating behavior-specific motor rhythms.

[1]  James Ashley,et al.  Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling , 2011, Nature Neuroscience.

[2]  O. Hobert,et al.  Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. , 2003, Journal of neurobiology.

[3]  Daryl M. Gohl,et al.  Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila , 2018, eLife.

[4]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[5]  Turgay Akay,et al.  A Cluster of Cholinergic Premotor Interneurons Modulates Mouse Locomotor Activity , 2009, Neuron.

[6]  Matthias Landgraf,et al.  Even-Skipped+ Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude , 2015, Neuron.

[7]  Hiroshi Kohsaka,et al.  Neural Circuits Underlying Fly Larval Locomotion , 2017, Current pharmaceutical design.

[8]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[9]  J. Nathan Kutz,et al.  Functionality and Robustness of Injured Connectomic Dynamics in C. elegans: Linking Behavioral Deficits to Neural Circuit Damage , 2017, PLoS Comput. Biol..

[10]  Stefan R. Pulver,et al.  Selective Inhibition Mediates the Sequential Recruitment of Motor Pools , 2016, Neuron.

[11]  Matthias Landgraf,et al.  Selective inhibition mediates the sequential recruitment of motor pools 1 , 2016 .

[12]  J. T. Hackett,et al.  Neuronal control of swimming behavior: Comparison of vertebrate and invertebrate model systems , 2011, Progress in Neurobiology.

[13]  K G Pearson,et al.  Generation of motor patterns for walking and flight in motoneurons supplying bifunctional muscles in the locust. , 1988, Journal of neurobiology.

[14]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[15]  G. Technau,et al.  The Drosophila Hox gene Ultrabithorax acts in both muscles and motoneurons to orchestrate formation of specific neuromuscular connections , 2017, Development.

[16]  E. Heckscher,et al.  Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs , 2016, G3: Genes, Genomes, Genetics.

[17]  V. Budnik,et al.  Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Kevin L. Briggman,et al.  Imaging Dedicated and Multifunctional Neural Circuits Generating Distinct Behaviors , 2006, The Journal of Neuroscience.

[19]  Evan Z. Macosko,et al.  A Hub-and-Spoke Circuit Drives Pheromone Attraction and Social Behavior in C. elegans , 2009, Nature.

[20]  Stephan Gerhard,et al.  Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment , 2016, The Journal of comparative neurology.

[21]  Zhaoyang Feng,et al.  The Neural Circuits and Synaptic Mechanisms Underlying Motor Initiation in C. elegans , 2011, Cell.

[22]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[23]  Takako Morimoto,et al.  A Group of Segmental Premotor Interneurons Regulates the Speed of Axial Locomotion in Drosophila Larvae , 2014, Current Biology.

[24]  Ole Kiehn,et al.  Locomotor Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons , 2013, Neuron.

[25]  Silvia Arber,et al.  Organization and function of neuronal circuits controlling movement , 2017, EMBO molecular medicine.

[26]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[27]  Kevin L. Briggman,et al.  Multifunctional pattern-generating circuits. , 2008, Annual review of neuroscience.

[28]  Franciszek Rakowski,et al.  Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost , 2017, PLoS Comput. Biol..

[29]  Vivian Budnik,et al.  Inhibitory Control of Synaptic and Behavioral Plasticity by Octopaminergic Signaling , 2012, The Journal of Neuroscience.

[30]  Stephen J. Eglen,et al.  Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling , 2013, Front. Comput. Neurosci..

[31]  James W. Truman,et al.  Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion , 2016, Scientific Reports.

[32]  Randall D. Beer,et al.  Information Flow through a Model of the C. elegans Klinotaxis Circuit , 2015, PloS one.

[33]  Jan Felix Evers,et al.  The development of motor coordination in Drosophila embryos , 2008, Development.

[34]  Aravinthan D. T. Samuel,et al.  Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion , 2012, Neuron.

[35]  J. Hooper,et al.  Homeotic gene function in the muscles of Drosophila larvae , 1986, The EMBO journal.

[36]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[37]  Abdeljabbar El Manira,et al.  Motor neurons control locomotor circuit function retrogradely via gap junctions , 2016, Nature.

[38]  H. Nishimaru,et al.  The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord , 2009, Acta physiologica.

[39]  Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy , 2018 .

[40]  Brian Mulloney,et al.  Proprioceptive feedback modulates coordinating information in a system of segmentally distributed microcircuits , 2014, Journal of neurophysiology.

[41]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[42]  Ryuzo Shingai,et al.  Neurons regulating the duration of forward locomotion in Caenorhabditis elegans , 2004, Neuroscience Research.

[43]  Jonathan T. Pierce-Shimomura,et al.  Genetic analysis of crawling and swimming locomotory patterns in C. elegans , 2008, Proceedings of the National Academy of Sciences.

[44]  S. Grillner,et al.  Measured motion: searching for simplicity in spinal locomotor networks , 2009, Current Opinion in Neurobiology.

[45]  Paolo Paoletti,et al.  Integrative neuromechanics of crawling in D. melanogaster larvae , 2016, eLife.

[46]  Matthias Landgraf,et al.  Midline Signalling Systems Direct the Formation of a Neural Map by Dendritic Targeting in the Drosophila Motor System , 2009, PLoS biology.

[47]  L. Griffith,et al.  Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. , 2004, Journal of neurophysiology.

[48]  Silvia Arber,et al.  Connecting neuronal circuits for movement , 2018, Science.

[49]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[50]  Casey M. Schneider-Mizell,et al.  Synaptic transmission parallels neuromodulation in a central food-intake circuit , 2016, bioRxiv.

[51]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[52]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  M. Bate,et al.  Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila , 2003, PLoS biology.

[54]  Michael J. O'Donovan,et al.  Motoneurons Dedicated to Either Forward or Backward Locomotion in the Nematode Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[55]  Albert Cardona,et al.  MDN brain descending neurons coordinately activate backward and inhibit forward locomotion , 2018, eLife.

[56]  P. Brodfuehrer,et al.  Identified neurons and leech swimming behavior , 2001, Progress in Neurobiology.

[57]  Stefan R. Pulver,et al.  Autonomous Circuitry for Substrate Exploration in Freely Moving Drosophila Larvae , 2012, Current Biology.

[58]  Aravinthan D. T. Samuel,et al.  C. elegans locomotion: small circuits, complex functions , 2015, Current Opinion in Neurobiology.

[59]  O. Kiehn Locomotor circuits in the mammalian spinal cord. , 2006, Annual review of neuroscience.

[60]  Aref Arzan Zarin,et al.  Neural circuits driving larval locomotion in Drosophila , 2018, Neural Development.

[61]  E. Marder,et al.  Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. , 2006, Journal of neurophysiology.

[62]  A. Cardona,et al.  A circuit mechanism for the propagation of waves of muscle contraction in Drosophila , 2016, eLife.

[63]  George Z. Mentis,et al.  Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits , 2016, Cell.

[64]  M. Bate,et al.  The Origin, Location, and Projections of the Embryonic Abdominal Motorneurons of Drosophila , 1997, The Journal of Neuroscience.

[65]  David L. McLean,et al.  Modular Organization of Axial Microcircuits in Zebrafish , 2014, Science.

[66]  Kristin Branson,et al.  Whole-central nervous system functional imaging in larval Drosophila , 2015, Nature Communications.

[67]  Steven B Augustine,et al.  A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans , 2016, eLife.

[68]  Gary C Sieck,et al.  Breathing: Motor Control of Diaphragm Muscle. , 2018, Physiology.

[69]  Mirna Mihovilovic Skanata,et al.  Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc , 2019, Current Biology.

[70]  J. Ramirez,et al.  Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps , 2000, Nature Neuroscience.

[71]  Alan Roberts,et al.  Origin of excitatory drive to a spinal locomotor network , 2008, Brain Research Reviews.

[72]  Shawn R. Lockery,et al.  Characterization of Drosophila Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature , 2012, The Journal of Neuroscience.

[73]  A. Chiba,et al.  Single-cell analysis of Drosophila larval neuromuscular synapses. , 2001, Developmental biology.

[74]  Paul W. Sternberg,et al.  Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics , 2007, Journal of Computational Neuroscience.

[75]  M. Brauner,et al.  Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin , 2011, Proceedings of the National Academy of Sciences.

[76]  Yutaka Yoshida,et al.  Molecular mechanisms underlying monosynaptic sensory‐motor circuit development in the spinal cord , 2018, Developmental dynamics : an official publication of the American Association of Anatomists.

[77]  Jessica Ausborn,et al.  Origin of excitation underlying locomotion in the spinal circuit of zebrafish , 2012, Proceedings of the National Academy of Sciences.

[78]  Michael Bate,et al.  Hox genes and the regulation of movement in Drosophila , 2008, Developmental neurobiology.

[79]  Josh Titlow,et al.  Analysis of various physiological salines for heart rate, CNS function, and synaptic transmission at neuromuscular junctions in Drosophila melanogaster larvae , 2013, Journal of Comparative Physiology A.

[80]  Stefan R. Pulver,et al.  Imaging fictive locomotor patterns in larval Drosophila , 2015, Journal of neurophysiology.

[81]  M. Bate,et al.  The embryonic development of larval muscles in Drosophila. , 1990, Development.

[82]  Silvia Arber,et al.  Distinct Limb and Trunk Premotor Circuits Establish Laterality in the Spinal Cord , 2015, Neuron.

[83]  Barbara Webb,et al.  Mechanics of exploration in Drosophila melanogaster , 2018, bioRxiv.

[84]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[85]  John B. Thomas,et al.  A sensory feedback circuit coordinates muscle activity in Drosophila , 2007, Molecular and Cellular Neuroscience.

[86]  Randall D. Beer,et al.  Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical Models of C. elegans Klinotaxis , 2013, PLoS Comput. Biol..

[87]  Juan-Pablo Labrador,et al.  Motor axon guidance in Drosophila. , 2017, Seminars in cell & developmental biology.

[88]  Marta Zlatic,et al.  Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila , 2017, Neuron.

[89]  William N Frost,et al.  Highly Dissimilar Behaviors Mediated by a Multifunctional Network in the Marine Mollusk Tritonia diomedea , 2002, The Journal of Neuroscience.

[90]  Michael B. Reiser,et al.  A Connectome Based Hexagonal Lattice Convolutional Network Model of the Drosophila Visual System , 2018, ArXiv.

[91]  Kazuo Emoto,et al.  Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae , 2017, Current Biology.

[92]  William B Kristan,et al.  From synapses to behavior: Development of a sensory‐motor circuit in the leech , 2008, Developmental neurobiology.

[93]  Toshiaki Endo,et al.  Genetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord , 2008, Neuron.

[94]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[95]  Jessica Ausborn,et al.  Optogenetic Activation of Excitatory Premotor Interneurons Is Sufficient to Generate Coordinated Locomotor Activity in Larval Zebrafish , 2014, The Journal of Neuroscience.

[96]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[97]  R. Kerr,et al.  A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans , 2015, Journal of The Royal Society Interface.

[98]  Brian Mulloney,et al.  Neurobiology of the crustacean swimmeret system , 2012, Progress in Neurobiology.

[99]  T. Wakabayashi,et al.  Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. , 2004, Neuroscience research.

[100]  Chie Satou,et al.  Hindbrain V2a Neurons in the Excitation of Spinal Locomotor Circuits during Zebrafish Swimming , 2013, Current Biology.

[101]  A. Roberts,et al.  How Neurons Generate Behavior in A Hatchling Amphibian Tadpole: An Outline , 2010, Front. Behav. Neurosci..