A fully dense and globally consistent 3D map reconstruction approach for GI tract to enhance therapeutic relevance of the endoscopic capsule robot

In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is emerging as a novel, minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Since the development of this technology, medical device companies and many research groups have made substantial progress in converting passive capsule endoscopes to robotic active capsule endoscopes with most of the functionality of current active flexible endoscopes. However, robotic capsule endoscopy still has some challenges. In particular, the use of such devices to generate a precise three-dimensional (3D) mapping of the entire inner organ remains an unsolved problem. Such global 3D maps of inner organs would help doctors to detect the location and size of diseased areas more accurately and intuitively, thus permitting more reliable diagnoses. To our knowledge, this paper presents the first complete pipeline for a complete 3D visual map reconstruction of the stomach. The proposed pipeline is modular and includes a preprocessing module, an image registration module, and a final shape-from-shading-based 3D reconstruction module; the 3D map is primarily generated by a combination of image stitching and shape-from-shading techniques, and is updated in a frame-by-frame iterative fashion via capsule motion inside the stomach. A comprehensive quantitative analysis of the proposed 3D reconstruction method is performed using an esophagus gastro duodenoscopy simulator, three different endoscopic cameras, and a 3D optical scanner.

[1]  Takayuki Okatani,et al.  Shape Reconstruction from an Endoscope Image by Shape from Shading Technique for a Point Light Source at the Projection Center , 1997, Comput. Vis. Image Underst..

[2]  Branislav Jaramaz,et al.  A Multi-Image Shape-from-Shading Framework for Near-Lighting Perspective Endoscopes , 2009, International Journal of Computer Vision.

[3]  Metin Sitti,et al.  Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope , 2012, IEEE Transactions on Robotics.

[4]  Guang-Zhong Yang,et al.  Soft-Tissue Motion Tracking and Structure Estimation for Robotic Assisted MIS Procedures , 2005, MICCAI.

[5]  Helder Araújo,et al.  A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots , 2017, International Journal of Intelligent Robotics and Applications.

[6]  Ève Coste-Manière,et al.  Towards endoscopic augmented reality for robotically assisted minimally invasive cardiac surgery , 2001, Proceedings International Workshop on Medical Imaging and Augmented Reality.

[7]  Stephen Lin,et al.  Single-image vignetting correction using radial gradient symmetry , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Helder Araujo,et al.  Magnetic-Visual Sensor Fusion based Medical SLAM for Endoscopic Capsule Robot , 2017 .

[9]  Guang-Zhong Yang,et al.  Real-Time Stereo Reconstruction in Robotically Assisted Minimally Invasive Surgery , 2010, MICCAI.

[10]  Russell H. Taylor,et al.  Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. , 2009, Urology.

[11]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[12]  Yasin Almalioglu,et al.  A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots , 2017, ArXiv.

[13]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Hung-Tat Tsui,et al.  Global Shape from Shading for an Endoscope Image , 1999, MICCAI.

[15]  M. Sitti,et al.  Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function , 2013, IEEE/ASME Transactions on Mechatronics.