Multiobjective PID control for a linear brushless DC motor: An evolutionary approach

A robust output tracking control design for a linear brushless DC motor with modelling uncertainties is presented. Frequency-domain design specifications directly related to the mixed sensitivity function and control energy consumption are imposed to ensure stability and performance robustness. A generalised two-parameter PID control framework is developed via an evolution algorithm, which searches the available solutions over a certain specified domain. The proposed design paradigm is intuitive and practical in the sense that it offers an effective way to implement simple but robust solutions covering a wide range of plant perturbation and, in addition, provides excellent tracking performance without resorting to excessive control. Experimental and numerical studies have been presented to confirm the proposed control design.

[1]  Angelo Raciti,et al.  A robust adaptive controller for PM motor drives in robotic applications , 1995 .

[2]  Chun-Liang Lin,et al.  Parameter design for a guidance and control system using genetic approach , 2001 .

[3]  Tsai-Yuan Lin,et al.  An H∞ design approach for neural net-based control schemes , 2001, IEEE Trans. Autom. Control..

[4]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[5]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[6]  Ion Boldea,et al.  Linear electric actuators and generators , 1997, 1997 IEEE International Electric Machines and Drives Conference Record.

[7]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[8]  I. Boldea,et al.  Linear Electric Actuators and Generators: Linear Electric Actuators and Generators , 1997 .

[9]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[10]  P. M. Pelczewski,et al.  The optimal control of a constrained drive system with brushless DC motor , 1990 .

[11]  Min-Kyu Kim,et al.  Multiobjective optimal design of three-phase induction motor using improved evolution strategy , 1998 .

[12]  Niahn-Chung Shieh,et al.  Robust output tracking control of a linear brushless DC motor with time-varying disturbances , 2002 .

[13]  Bor-Sen Chen,et al.  A structure-specified H∞ optimal control design for practical applications: a genetic approach , 1998, IEEE Trans. Control. Syst. Technol..

[14]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[15]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  Faa-Jeng Lin,et al.  Variable structure adaptive control for PM synchronous servo motor drive , 1999 .

[17]  N. Hemati,et al.  Robust nonlinear control of brushless DC motors for direct-drive robotic applications , 1990 .

[18]  Lino A. Costa,et al.  Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems , 2001 .

[19]  Jin-Hyun Park,et al.  An on-line PID control scheme for unknown nonlinear dynamic systems using evolution strategy , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[20]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.