Polynomial-chaos-based Bayesian approach for state and parameter estimations
暂无分享,去创建一个
T. Singh | P. Singla | R. Madankan | P. Scott
[1] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[2] A. Booth. Numerical Methods , 1957, Nature.
[3] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[4] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[5] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[6] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[7] S. F. Schmidt,et al. Application of State-Space Methods to Navigation Problems , 1966 .
[8] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[9] A.H. Haddad,et al. Applied optimal estimation , 1976, Proceedings of the IEEE.
[10] J. J. Moré,et al. Levenberg--Marquardt algorithm: implementation and theory , 1977 .
[11] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[12] F. Daum. Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.
[13] Frederick Daum. A new nonlinear filtering formula for discrete time measurements , 1985, 1985 24th IEEE Conference on Decision and Control.
[14] Frederick Daum. A new nonlinear filtering formula non-Gaussian discrete time measurements , 1986, 1986 25th IEEE Conference on Decision and Control.
[15] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[16] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[17] P. Khargonekar,et al. Filtering and smoothing in an H/sup infinity / setting , 1991 .
[18] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] T. Coleman,et al. On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .
[20] Lihua Xie,et al. Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..
[21] Thomas F. Coleman,et al. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..
[22] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[23] Thomas F. Coleman,et al. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..
[24] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[25] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[26] Ian R. Petersen,et al. Robust Kalman Filtering for Signals and Systems with Large Uncertainties , 1999 .
[27] Jan Nygaard Nielsen,et al. Parameter estimation in stochastic differential equations: An overview , 2000 .
[28] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[29] Ali H. Sayed,et al. A framework for state-space estimation with uncertain models , 2001, IEEE Trans. Autom. Control..
[30] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[31] Petar M. Djuric,et al. Guest editorial special issue on monte carlo methods for statistical signal processing , 2002, IEEE Trans. Signal Process..
[32] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[33] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[34] J. Huang,et al. Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).
[35] Eric Walter,et al. Ellipsoidal parameter or state estimation under model uncertainty , 2004, Autom..
[36] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[37] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[38] John B. Moore,et al. Optimal State Estimation , 2006 .
[39] Marcus I. Bursik,et al. Input uncertainty propagation methods and hazard mapping of geophysical mass flows , 2006 .
[40] Dan Simon,et al. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .
[41] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[42] Adrian Sandu,et al. Parameter estimation method using an extended Kalman Filter , 2007 .
[43] T. Singh,et al. Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models , 2008 .
[44] Dongbin Xiu,et al. A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..
[45] Benjamin L. Pence,et al. A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.
[46] R. Bhattacharya,et al. Nonlinear estimation with polynomial chaos and higher order moment updates , 2010, Proceedings of the 2010 American Control Conference.
[47] Puneet Singla,et al. The Conjugate Unscented Transform — An approach to evaluate multi-dimensional expectation integrals , 2012, 2012 American Control Conference (ACC).
[48] Peter D. Scott,et al. Polynomial chaos based method for state and parameter estimation , 2012, 2012 American Control Conference (ACC).
[49] Puneet Singla,et al. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion , 2014, J. Comput. Phys..
[50] Sayan Gupta,et al. The use of polynomial chaos for parameter identification from measurements in nonlinear dynamical systems , 2015 .