Polynomial-chaos-based Bayesian approach for state and parameter estimations

Two new recursive approaches have been developed to provide accurate estimates for posterior moments of both parameters and system states while making use of the generalized polynomial-chaos framework for uncertainty propagation. The main idea of the generalized polynomial-chaos method is to expand random state and input parameter variables involved in a stochastic differential/difference equation in a polynomial expansion. These polynomials are associated with the prior probability density function for the input parameters. Later, Galerkin projection is used to obtain a deterministic system of equations for the expansion coefficients. The first proposed approach provides means to update prior expansion coefficients by constraining the polynomial-chaos expansion to satisfy a specified number of posterior moment constraints derived from Bayes’s rule. The second proposed approach makes use of the minimum variance formulation to update generalized polynomial-chaos coefficients. The main advantage of the prop...

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  A. Booth Numerical Methods , 1957, Nature.

[3]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[4]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[7]  S. F. Schmidt,et al.  Application of State-Space Methods to Navigation Problems , 1966 .

[8]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[9]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[10]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[11]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[13]  Frederick Daum A new nonlinear filtering formula for discrete time measurements , 1985, 1985 24th IEEE Conference on Decision and Control.

[14]  Frederick Daum A new nonlinear filtering formula non-Gaussian discrete time measurements , 1986, 1986 25th IEEE Conference on Decision and Control.

[15]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[16]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[17]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[18]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[20]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[21]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[22]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[23]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[24]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[25]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[26]  Ian R. Petersen,et al.  Robust Kalman Filtering for Signals and Systems with Large Uncertainties , 1999 .

[27]  Jan Nygaard Nielsen,et al.  Parameter estimation in stochastic differential equations: An overview , 2000 .

[28]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[29]  Ali H. Sayed,et al.  A framework for state-space estimation with uncertain models , 2001, IEEE Trans. Autom. Control..

[30]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[31]  Petar M. Djuric,et al.  Guest editorial special issue on monte carlo methods for statistical signal processing , 2002, IEEE Trans. Signal Process..

[32]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[33]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[34]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[35]  Eric Walter,et al.  Ellipsoidal parameter or state estimation under model uncertainty , 2004, Autom..

[36]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[37]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[38]  John B. Moore,et al.  Optimal State Estimation , 2006 .

[39]  Marcus I. Bursik,et al.  Input uncertainty propagation methods and hazard mapping of geophysical mass flows , 2006 .

[40]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[41]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[42]  Adrian Sandu,et al.  Parameter estimation method using an extended Kalman Filter , 2007 .

[43]  T. Singh,et al.  Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models , 2008 .

[44]  Dongbin Xiu,et al.  A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..

[45]  Benjamin L. Pence,et al.  A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.

[46]  R. Bhattacharya,et al.  Nonlinear estimation with polynomial chaos and higher order moment updates , 2010, Proceedings of the 2010 American Control Conference.

[47]  Puneet Singla,et al.  The Conjugate Unscented Transform — An approach to evaluate multi-dimensional expectation integrals , 2012, 2012 American Control Conference (ACC).

[48]  Peter D. Scott,et al.  Polynomial chaos based method for state and parameter estimation , 2012, 2012 American Control Conference (ACC).

[49]  Puneet Singla,et al.  Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion , 2014, J. Comput. Phys..

[50]  Sayan Gupta,et al.  The use of polynomial chaos for parameter identification from measurements in nonlinear dynamical systems , 2015 .