Calabi quasimorphism and quantum homology

We prove that the group of area-preserving diffeomorphisms of the 2-sphere admits a non-trivial homogeneous quasimorphism to the real numbers with the following property. Its value on any diffeomorphism supported in a sufficiently small open subset of the sphere equals to the Calabi invariant of the diffeomorphism. This result extends to more general symplectic manifolds: If the symplectic manifold is monotone and its quantum homology algebra is semi-simple we construct a similar quasimorphism on the universal cover of the group of Hamiltonian diffeomorphisms.

[1]  Y. Ostrover A COMPARISON OF HOFER'S METRICS ON HAMILTONIAN DIFFEOMORPHISMS AND LAGRANGIAN SUBMANIFOLDS , 2002, math/0207070.

[2]  Y. Oh Mini-max theory, spectral invariants and geometry of the Hamiltonian diffeomorphism group , 2002, math/0206092.

[3]  A. Postnikov Affine approach to quantum Schubert calculus , 2002, math/0205165.

[4]  Michael Entov Commutator length of symplectomorphisms , 2001, math/0112012.

[5]  L. Polterovich The Geometry of the Group of Symplectic Diffeomorphism , 2001 .

[6]  Y. Oh Chain level Floer theory and Hofer's geometry of the Hamiltonian diffeomorphism group , 2001, math/0104243.

[7]  D. Mcduff Geometric variants of the Hofer norm , 2001, math/0103089.

[8]  D. Mcduff Geometric Invariants of the Hofer Norm , 2001 .

[9]  M. Schwarz On the action spectrum for closed symplectically aspherical manifolds Pacific J , 2000 .

[10]  A. Fomenko,et al.  Exact topological classification of Hamiltonian flows on smooth two-dimensional surfaces , 1999 .

[11]  Y. Oh Symplectic topology as the geometry of action functional, II: Pants product and cohomological invariants , 1999 .

[12]  Gang Liu Associativity of Quantum Multiplication , 1998 .

[13]  Lowell Abrams The quantum euler class and the quantum cohomology of the Grassmannians , 1997, q-alg/9712025.

[14]  L. Polterovich,et al.  Topological rigidity of Hamiltonian loops and quantum homology , 1997, dg-ga/9710017.

[15]  W. Fulton,et al.  Quantum Multiplication of Schur Polynomials , 1997, alg-geom/9705024.

[16]  Y. Oh Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle , 1997 .

[17]  D. Salamon,et al.  Symplectic Floer-Donaldson theory and quantum cohomology , 1996 .

[18]  P. Seidel $ \pi _1 $ of Symplectic Automorphism Groups and Invertibles in Quantum Homology Rings , 1995, dg-ga/9511011.

[19]  D. Salamon,et al.  Floer homology and Novikov rings , 1995 .

[20]  G. Tian,et al.  On Quantum Cohomology Rings of Fano Manifolds and a Formula of Vafa and Intriligator , 1994, alg-geom/9403010.

[21]  A. Bertram TOWARDS A SCHUBERT CALCULUS FOR MAPS FROM A RIEMANN SURFACE TO A GRASSMANNIAN , 1994, alg-geom/9403007.

[22]  D. Salamon,et al.  J-Holomorphic Curves and Quantum Cohomology , 1994 .

[23]  Y. Ruan,et al.  A mathematical theory of quantum cohomology , 1994 .

[24]  Schubert Calculus,et al.  Quantum Schubert Calculus , 1994 .

[25]  E. Witten The Verlinde algebra and the cohomology of the Grassmannian , 1993, hep-th/9312104.

[26]  Fernando Q. Gouvêa,et al.  P-Adic Numbers: An Introduction , 1993 .

[27]  D. Mcduff,et al.  The geometry of symplectic energy , 1993, math/9306216.

[28]  L. Polterovich Symplectic displacement energy for Lagrangian submanifolds , 1993, Ergodic Theory and Dynamical Systems.

[29]  É. Ghys,et al.  Cocycles d'Euler et de Maslov , 1992 .

[30]  Claude Viterbo,et al.  Symplectic topology as the geometry of generating functions , 1992 .

[31]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[32]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[33]  H. Hofer On the topological properties of symplectic maps , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[34]  A. Floer Symplectic fixed points and holomorphic spheres , 1989 .

[35]  I. Sinai,et al.  Ergodic theory with applications to dynamical systems and statistical mechanics , 1989 .

[36]  Y. Sinai Dynamical systems II. Ergodic theory with applications to dynamical systems and statistical mechanics , 1989 .

[37]  M. Gromov Pseudo holomorphic curves in symplectic manifolds , 1985 .

[38]  C. Conley,et al.  The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold , 1983 .

[39]  R. Brooks Some Remarks on Bounded Cohomology , 1981 .

[40]  Augustin Banyaga,et al.  Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique , 1978 .