Analysis of the concept of minimum energy path on the potential energy surface of chemically reacting systems

Some confusion regarding the properties of minimum energy paths is evident in the literature. We show that a way of steepest descent on a potential surface can be defined independently upon the choice of the coordinate systems. The result is applied to mass-weighted coordinates and their use is critically reviewed. Fukui's IRC appears to be a special case of the steepest descent path starting from a saddle point. The impossibility to define a general ascent path is illustrated and the relations of IRC to real trajectories are discussed.

[1]  G. Leroy,et al.  An internal coordinate invariant reaction pathway , 1981 .

[2]  Bernard Pullman,et al.  The World of Quantum Chemistry , 1974 .

[3]  M. Dewar,et al.  MINDO [modified intermediate neglect of differential overlap]/2 study of aromatic ("allowed") electrocyclic reactions of cyclopropyl and cyclobutene , 1971 .

[4]  K. Laidler,et al.  Symmetries of activated complexes , 1968 .

[5]  L. Salem Transition States and Reaction Mechanisms in Organic Chemistry , 1976 .

[6]  G. A. Natanson Internal motion of a non-rigid molecule and its relation to the reaction path , 1982 .

[7]  J. Dunitz Chemical reaction paths , 1975 .

[8]  M. Basilevsky Natural coordinates for polyatomic reactions , 1977 .

[9]  K. Fukui,et al.  A THEORETICAL TREATMENT ON THE BEHAVIOR OF THE HYDROGEN‐BONDED PROTON IN MALONALDEHYDE , 1977 .

[10]  K. Fukui,et al.  Differential geometry of chemically reacting systems , 1978 .

[11]  P. Pechukas,et al.  On simple saddle points of a potential surface, the conservation of nuclear symmetry along paths of steepest descent, and the symmetry of transition states , 1976 .

[12]  K. Yamashita,et al.  IRC approach to chemical dynamics: toward mode-selective chemical reactions , 1981 .

[13]  K. Fukui,et al.  Intrinsic dynamism in chemically reacting systems , 1979 .

[14]  J. McIver,et al.  Group theoretical selection rules for the transition states of chemical reactions , 1975 .

[15]  Kazuhiro Ishida,et al.  The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H−+CH4→CH4+H− , 1977 .

[16]  J. Watson The isotope dependence of the equilibrium rotational constants in 1Σ states of diatomic molecules , 1973 .

[17]  C. Bender,et al.  The least-motion insertion reaction methylene(1A1) + molecular hydrogen .fwdarw. methane. Theoretical study of a process forbidden by orbital symmetry , 1976 .

[18]  Adi Ben-Israel,et al.  Some Topics in Generalized Inverses of Matrices , 1976 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  P. Jørgensen,et al.  Walking on potential energy surfaces , 1983 .

[21]  WM. CHAPPELL,et al.  Molecular Vibrations , 1879, Nature.

[22]  Klaus Müller,et al.  Reaktionswege auf mehrdimensionalen Energiehyperflächen , 1980 .

[23]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[24]  Horace Traubel Collect , 1904 .

[25]  Carl Eckart,et al.  Some Studies Concerning Rotating Axes and Polyatomic Molecules , 1935 .

[26]  Robert G. Parr,et al.  The New World of Quantum Chemistry , 1976 .

[27]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[28]  I. Csizmadia Applications of MO theory in organic chemistry , 1977 .

[29]  K. Fukui,et al.  CONSTITUENT ANALYSIS OF THE POTENTIAL GRADIENT ALONG A REACTION COORDINATE, METHOD AND AN APPLICATION TO CH4 + T REACTION , 1975 .

[30]  K. Morokuma,et al.  Potential energy characteristics and energy partitioning in chemical reactions: Abinitio MO study of H2CCH2F→H2CCHF+H reaction , 1980 .

[31]  M. Yu. Kornilov,et al.  A direct method for obtaining cartesian coordinates of atoms in molecules , 1982, Comput. Chem..

[32]  K. Morokuma,et al.  Potential Energy Surfaces of Chemical Reactions , 1983 .

[33]  K. Morokuma,et al.  Force decomposition analysis along reaction coordinate , 1977 .

[34]  K. Fukui,et al.  Dynamic behavior of the IRC in chemical laser systems , 1982 .

[35]  J. Pancír̆ Formaldehyde-hydroxycarbene rearrangement , 1977 .

[36]  K. Fukui The Charge and Spin Transfers in Chemical Reaction Paths , 1974 .

[37]  P. Pulay An efficient ab initio gradient program , 1979 .

[38]  R. Penrose A Generalized inverse for matrices , 1955 .

[39]  P. Mezey Reactive domains of energy hypersurfaces and the stability of minimum energy reaction paths , 1980 .

[40]  X. Chapuisat,et al.  To what extent can an intrinsic definition of a reaction path be given , 1982 .

[41]  Cleve Moler,et al.  Mathematical Handbook for Scientists and Engineers , 1961 .

[42]  M. V. Basilevsky The topography of potential energy surfaces , 1982 .

[43]  J. Pancíř Calculation of the least energy path on the energy hypersurface , 1975 .

[44]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[45]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[46]  K. Fukui Formulation of the reaction coordinate , 1970 .

[47]  I. Bálint,et al.  Search for saddle points of energy hypersurfaces using a multi-dimensional space of “guiding” coordinates , 1983 .

[48]  J. Murrell The potential energy surfaces of polyatomic molecules , 1977 .

[49]  P. Löwdin,et al.  New Horizons of Quantum Chemistry , 1983 .

[50]  Y. Jean,et al.  Theoretical chemical dynamics: A tool in organic chemistry , 1976 .

[51]  X. Chapuisat,et al.  A Method To Obtain the Eckart Hamiltonian and the Equations of Motion of a Highly Deformable Polyatomic System in Terms of Generalized Coordinates , 1981 .

[52]  O. Ermer Aspekte von Kraftfeldrechnungen , 1981 .

[53]  Keiji Morokuma,et al.  Potential energy characteristics and energy partitioning in chemical reactions: Abinitio MO study of four‐centered elimination reaction CH3CH2F→CH2=CH2+HF , 1980 .

[54]  Novel variational principles of chemical reaction , 1980 .

[55]  Z. Slanina Chemical Isomerism and Its Contemporary Theoretical Description , 1981 .

[56]  I. Williams Force-constant computations in cartesian coordinates. Elimination of translational and rotational contributions , 1983 .