Partition Functions from Rao-Blackwellized Tempered Sampling
暂无分享,去创建一个
David E. Carlson | Liam Paninski | Ari Pakman | Patrick Stinson | Ari Pakman | L. Paninski | David Edwin Carlson | Patrick Stinson
[1] Charles H. Bennett,et al. Efficient estimation of free energy differences from Monte Carlo data , 1976 .
[2] Paul Smolensky,et al. Information processing in dynamical systems: foundations of harmony theory , 1986 .
[3] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[4] C. Geyer. Estimating Normalizing Constants and Reweighting Mixtures , 1994 .
[5] C. Geyer,et al. Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .
[6] Xiao-Li Meng,et al. SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .
[7] Xiao-Li Meng,et al. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .
[8] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[9] D. Landau,et al. Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.
[10] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[11] A. Gorin,et al. Accelerated simulated tempering , 2004 .
[12] Radford M. Neal. Estimating Ratios of Normalizing Constants Using Linked Importance Sampling , 2005, math/0511216.
[13] Ruslan Salakhutdinov,et al. On the quantitative analysis of deep belief networks , 2008, ICML '08.
[14] Mark A. Girolami,et al. Bayesian ranking of biochemical system models , 2008, Bioinform..
[15] Mark A. Girolami,et al. Bayesian ranking of biochemical system models , 2008, Bioinform..
[16] Michael R. Shirts,et al. Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.
[17] Geoffrey E. Hinton,et al. Using fast weights to improve persistent contrastive divergence , 2009, ICML '09.
[18] Mark A. Girolami,et al. Estimating Bayes factors via thermodynamic integration and population MCMC , 2009, Comput. Stat. Data Anal..
[19] Ruslan Salakhutdinov,et al. Learning in Markov Random Fields using Tempered Transitions , 2009, NIPS.
[20] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[21] Ruslan Salakhutdinov,et al. Learning Deep Boltzmann Machines using Adaptive MCMC , 2010, ICML.
[22] Pascal Vincent,et al. Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines , 2010, AISTATS.
[23] Jun S. Liu,et al. The Wang-Landau algorithm in general state spaces: Applications and convergence analysis , 2010 .
[24] C. Robert,et al. Importance sampling methods for Bayesian discrimination between embedded models , 2009, 0910.2325.
[25] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[26] Yoshua Bengio,et al. On Tracking The Partition Function , 2011, NIPS.
[27] Jascha Sohl-Dickstein,et al. Minimum Probability Flow Learning , 2009, ICML.
[28] Nial Friel,et al. Estimating the evidence – a review , 2011, 1111.1957.
[29] P. Dellaportas,et al. Control variates for estimation based on reversible Markov chain Monte Carlo samplers , 2012 .
[30] Z. Tan,et al. Theory of binless multi-state free energy estimation with applications to protein-ligand binding. , 2012, The Journal of chemical physics.
[31] Ruslan Salakhutdinov,et al. Annealing between distributions by averaging moments , 2013, NIPS.
[32] Jan-Willem van de Meent,et al. Tempering by Subsampling , 2014, 1401.7145.
[33] Nial Friel,et al. Improving power posterior estimation of statistical evidence , 2012, Stat. Comput..
[34] Volkan Cevher,et al. Stochastic Spectral Descent for Restricted Boltzmann Machines , 2015, AISTATS.
[35] Florent Krzakala,et al. Training Restricted Boltzmann Machines via the Thouless-Anderson-Palmer Free Energy , 2015, NIPS 2015.
[36] John W. Fisher,et al. Estimating the Partition Function by Discriminance Sampling , 2015, UAI.
[37] Ruslan Salakhutdinov,et al. Scaling up Natural Gradient by Sparsely Factorizing the Inverse Fisher Matrix , 2015, ICML.
[38] Ruslan Salakhutdinov,et al. Accurate and conservative estimates of MRF log-likelihood using reverse annealing , 2014, AISTATS.
[39] Daniel Jiwoong Im,et al. Understanding Minimum Probability Flow for RBMs Under Various Kinds of Dynamics , 2015, ICLR.
[40] Ryan P. Adams,et al. Sandwiching the marginal likelihood using bidirectional Monte Carlo , 2015, ArXiv.
[41] Volkan Cevher,et al. Preconditioned Spectral Descent for Deep Learning , 2015, NIPS.
[42] Volkan Cevher,et al. Stochastic Spectral Descent for Discrete Graphical Models , 2016, IEEE Journal of Selected Topics in Signal Processing.
[43] Mark Girolami,et al. The Controlled Thermodynamic Integral for Bayesian Model Evidence Evaluation , 2016 .
[44] Ole Winther,et al. Bayesian Generalised Ensemble Markov Chain Monte Carlo , 2016, AISTATS.
[45] Bin W. Zhang,et al. Locally weighted histogram analysis and stochastic solution for large-scale multi-state free energy estimation. , 2016, The Journal of chemical physics.
[46] Z. Tan. Optimally Adjusted Mixture Sampling and Locally Weighted Histogram Analysis , 2017 .