Image Processing Done Right

A large part of "image processing" involves the computation of significant points, curves and areas ("features"). These can be defined as loci where absolute differential invariants of the image assume fiducial values, taking spatial scale and intensity (in a generic sense) scale into account. "Differential invariance" implies a group of "similarities" or "congruences". These "motions" define the geometrical structure of image space. Classical Euclidian invariants don't apply to images because image space is non-Euclidian. We analyze image structure from first principles and construct the fundamental group of image space motions. Image space is a Cayley-Klein geometry with one isotropic dimension. The analysis leads to a principled definition of "features" and the operators that define them.

[1]  Ansel Adams,et al.  The print : contact printing and enlarging , 1950 .

[2]  K. Prz.,et al.  Ostwalds Klassiker der exakten Wissenschaften , 1906 .

[3]  K. Strubecker Differentialgeometrie des isotropen Raumes. III. Flächentheorie , 1942 .

[4]  Clifford,et al.  Preliminary Sketch of Biquaternions , 1871 .

[5]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[6]  Hans Sachs,et al.  Ebene isotrope Geometrie , 1987 .

[7]  Arthur Cayley,et al.  IV. A sixth memoir upon quantics , 1859 .

[8]  Arthur Cayley XXIII. A fifth memoir upon quantics , 1858, Philosophical Transactions of the Royal Society of London.

[9]  Felix Klein,et al.  Ueber die sogenannte Nicht-Euklidische Geometrie , 1873 .

[10]  K. Strubecker Differentialgeometrie des isotropen Raumes. II. Die Flächen konstanter RelativkrümmungK=rt−s2 , 1942 .

[11]  Helmut Pottmann,et al.  Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces , 1994, Comput. Aided Geom. Des..

[12]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[13]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[14]  K. Strubecker Differentialgeometrie des isotropen Raumes. IV. Theorie der flächentreuen Abbildungen der Ebene , 1944 .

[15]  I. M. Yaglom,et al.  Complex Numbers in Geometry , 1969, The Mathematical Gazette.

[16]  Bram van Ginneken,et al.  Applications of Locally Orderless Images , 1999, J. Vis. Commun. Image Represent..

[17]  I. M. I︠A︡glom A simple non-Euclidean geometry and its physical basis : an elementary account of Galilean geometry and the Galilean principle of relativity , 1979 .

[18]  Hans Sachs,et al.  Isotrope Geometrie des Raumes , 1990 .