CO 2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts: Opportunities and Challenges

[1]  Chi‐Hwa Wang,et al.  Mesoporous Silica‐Encaged Ultrafine Bimetallic Nanocatalysts for CO2 Hydrogenation to Formates , 2019, ChemCatChem.

[2]  Tao Zhang,et al.  Iridium Single-Atom Catalyst Performing a Quasi-homogeneous Hydrogenation Transformation of CO2 to Formate , 2019, Chem.

[3]  B. Liu,et al.  Single-Atom Catalysis toward Efficient CO2 Conversion to CO and Formate Products. , 2018, Accounts of chemical research.

[4]  C. Copéret,et al.  CO2 Hydrogenation to Formate with Immobilized Ru‐Catalysts Based on Hybrid Organo‐Silica Mesostructured Materials , 2018, ChemCatChem.

[5]  Shouheng Sun,et al.  Cu-based nanocatalysts for electrochemical reduction of CO2 , 2018, Nano Today.

[6]  Jihong Yu,et al.  The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion , 2018 .

[7]  H. Yamashita,et al.  Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO2 to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles. , 2018, Journal of the American Chemical Society.

[8]  J. Ross,et al.  Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates , 2018, Catalysis Reviews.

[9]  Wenhui Li,et al.  A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts , 2018, RSC advances.

[10]  M. Jaroniec,et al.  Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities , 2018, Advanced materials.

[11]  Yanbing Guo,et al.  Cu‐Decorated ZnO Nanorod Array Integrated Structured Catalysts for Low‐Pressure CO2 Hydrogenation to Methanol , 2018 .

[12]  Hailong Liu,et al.  A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol , 2017, Science Advances.

[13]  Ning Wang,et al.  Subnanometric Hybrid Pd-M(OH)2, M = Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation , 2017 .

[14]  F. Kapteijn,et al.  Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes , 2017, Chemical reviews.

[15]  Qiang Xu,et al.  Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. , 2017, Accounts of chemical research.

[16]  K. Yoshizawa,et al.  Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO2-mediated chemical hydrogen delivery/storage. , 2017, Chemical communications.

[17]  H. Yamashita,et al.  Isolated Single-Atomic Ru Catalyst Bound on a Layered Double Hydroxide for Hydrogenation of CO2 to Formic Acid , 2017 .

[18]  Jiaguo Yu,et al.  Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review , 2017 .

[19]  E. Hensen,et al.  On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates , 2016 .

[20]  Sungho Yoon,et al.  Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts , 2016 .

[21]  Jürgen Klankermayer,et al.  Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. , 2016, Angewandte Chemie.

[22]  Ning Wang,et al.  In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. , 2016, Journal of the American Chemical Society.

[23]  Tao Zhang,et al.  Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity , 2016 .

[24]  J. Díez-Ramírez,et al.  CO2 Hydrogenation to Methanol at Atmospheric Pressure: Influence of the Preparation Method of Pd/ZnO Catalysts , 2016, Catalysis Letters.

[25]  Jingguang G. Chen,et al.  Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities , 2016 .

[26]  J. S. Lee,et al.  Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts , 2015 .

[27]  Detlef Stolten,et al.  Closing the loop: Captured CO2 as a feedstock in the chemical industry , 2015 .

[28]  E. Catizzone,et al.  Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation , 2015 .

[29]  Etsuko Fujita,et al.  CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. , 2015, Chemical reviews.

[30]  Ping Liu,et al.  Low Pressure CO2 Hydrogenation to Methanol over Gold Nanoparticles Activated on a CeO(x)/TiO2 Interface. , 2015, Journal of the American Chemical Society.

[31]  Xiao Jiang,et al.  Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol , 2015 .

[32]  G. Somorjai,et al.  High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis , 2015, Nature Communications.

[33]  Hongfei Lin,et al.  Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. , 2015, ChemSusChem.

[34]  Zhongmin Liu,et al.  Methanol to Olefins (MTO): From Fundamentals to Commercialization , 2015 .

[35]  Qiang Xu,et al.  Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage , 2015 .

[36]  Jian‐Qiang Wang,et al.  An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis. , 2014, Angewandte Chemie.

[37]  Jyeshtharaj B. Joshi,et al.  Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies , 2014 .

[38]  Kangjun Wang,et al.  V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation , 2014 .

[39]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[40]  Chang Won Yoon,et al.  Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride , 2014 .

[41]  E. Hensen,et al.  Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP‐Pincer Catalyst , 2014 .

[42]  Wen-Hui Wang,et al.  Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen , 2014 .

[43]  Ib Chorkendorff,et al.  Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. , 2014, Nature chemistry.

[44]  M. A. Baltanás,et al.  Performance of ternary Cu–Ga2O3–ZrO2 catalysts in the synthesis of methanol using CO2-rich gas mixtures , 2013 .

[45]  W. Li,et al.  Hydrogenation CO2 to Formic Acid over Ru Supported on γ-Al2O3 Nanorods , 2013 .

[46]  C. Cannilla,et al.  Hybrid Cu–ZnO–ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation , 2013 .

[47]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[48]  William F. Schneider,et al.  Catalytic Hydrogenation of CO2 to Formic Acid with Silica‐Tethered Iridium Catalysts , 2013 .

[49]  Xiao Jiang,et al.  Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis , 2012 .

[50]  J. Calvino,et al.  The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst , 2012 .

[51]  G. Laurenczy,et al.  Formic acid as a hydrogen source – recent developments and future trends , 2012 .

[52]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[53]  Danjun Wang,et al.  Characterization and performance of Cu/ZnO/Al2O3 catalysts prepared via decomposition of M(Cu, Zn)-ammonia complexes under sub-atmospheric pressure for methanol synthesis from H2 and CO2 , 2011 .

[54]  H. Junge,et al.  Catalysis: acidic ideas for hydrogen storage. , 2011, Nature nanotechnology.

[55]  Shengping Wang,et al.  Hydrogenation of CO2 to formic acid on supported ruthenium catalysts , 2011 .

[56]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[57]  H. Fan,et al.  Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis , 2010 .

[58]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[59]  F. Schüth,et al.  Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .

[60]  C. Bae,et al.  The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review , 2008 .

[61]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[62]  Frank T. Princiotta,et al.  Global climate change - the technology challenge , 2007 .

[63]  J. Hansen,et al.  Global temperature change , 2006, Proceedings of the National Academy of Sciences.

[64]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[65]  R. Borup,et al.  Dimethyl ether (DME) as an alternative fuel , 2006 .

[66]  J. Bilbao,et al.  Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2 , 2005 .

[67]  Sebastián E. Collins,et al.  Hydrogen Spillover in Ga2O3–Pd/SiO2 Catalysts for Methanol Synthesis from CO2/H2 , 2005 .

[68]  Philip G. Jessop,et al.  Recent advances in the homogeneous hydrogenation of carbon dioxide , 2004 .

[69]  Xiaoming Zheng,et al.  Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (I): the effect of functionalizing group and additive on the catalyst performance , 2004 .

[70]  T. Knutson,et al.  Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization , 2004 .

[71]  Weiwei Lu,et al.  Low-temperature synthesis of DME from CO2/H2 over Pd-modified CuO–ZnO–Al2O3–ZrO2/HZSM-5 catalysts , 2004 .

[72]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[73]  D. Wayne Goodman,et al.  Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts , 1997 .

[74]  C. Campbell,et al.  Methanol Synthesis and Reverse Water–Gas Shift Kinetics over Cu(110) Model Catalysts: Structural Sensitivity , 1996 .

[75]  T. Fujitani,et al.  Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen , 1995 .

[76]  Ryoji Noyori,et al.  Homogeneous Hydrogenation of Carbon Dioxide , 1995 .

[77]  P. Jessop,et al.  Homogeneous catalytic hydrogenation of supercritical carbon dioxide , 1994, Nature.

[78]  J. Dubois,et al.  Conversion of CO2 to dimethylether and methanol over hybrid catalysts , 1992 .

[79]  C. Stalder,et al.  Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen , 1983 .

[80]  Y. Inoue,et al.  CATALYTIC FIXATION OF CARBON DIOXIDE TO FORMIC ACID BY TRANSITION-METAL COMPLEXES UNDER MILD CONDITIONS , 1976 .

[81]  Mark W. Farlow,et al.  The Hydrogenation of Carbon Dioxide and a Correction of the Reported Synthesis of Urethans , 1935 .

[82]  The British Medical Association , 1904, The Indian medical gazette.

[83]  E. Tzimas,et al.  Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment , 2016 .

[84]  Xiaoming Guo,et al.  Methanol Synthesis from CO2 Hydrogenation over CuO–ZnO–TiO2 Catalysts: The Influence of TiO2 Content , 2015 .

[85]  Atsushi Urakawa,et al.  Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products , 2014 .

[86]  K. C. Waugh,et al.  Synthesis of Methanol , 1988 .

[87]  M. Ichikawa,et al.  Formation of dimethyl ether from hydrogen and carbon dioxide over a graphite–PdCl2–Na catalyst , 1972 .

[88]  G. Bredig,et al.  Katalytische Synthese der Ameisensäure unter Druck , 1914 .